Access to information is taken for granted in urban areas covered by a robust communication infrastructure. Nevertheless most of the areas in the world, are not covered by such infrastructures. We propose a DTN publish and subscribe system called Hikari, which uses nodes' mobility in order to distribute messages without using a robust infrastructure. The area of Disruption/Delay Tolerant Networks (DTN) focuses on providing connectivity to locations separated by networks with disruptions and delays. The Hikari system does not use node identifiers for message forwarding thus eliminating the complexity of routing associated with many forwarding schemes in DTN. Hikari uses nodes paths' information, advertised by special nodes in the system or predicted by the system itself, for optimizing the message dissemination process. We have used the Paris subway system, due to it's complexity, to validate Hikari and to analyze it's performance. We have shown that Hikari achieves a superior deliver rate while keeping redundant messages in the system low, which is ideal when using devices with limited resources for message dissemination.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Sergio CARRILHO, Hiroshi ESAKI, "A Pub/Sub Message Distribution Architecture for Disruption Tolerant Networks" in IEICE TRANSACTIONS on Information,
vol. E92-D, no. 10, pp. 1888-1896, October 2009, doi: 10.1587/transinf.E92.D.1888.
Abstract: Access to information is taken for granted in urban areas covered by a robust communication infrastructure. Nevertheless most of the areas in the world, are not covered by such infrastructures. We propose a DTN publish and subscribe system called Hikari, which uses nodes' mobility in order to distribute messages without using a robust infrastructure. The area of Disruption/Delay Tolerant Networks (DTN) focuses on providing connectivity to locations separated by networks with disruptions and delays. The Hikari system does not use node identifiers for message forwarding thus eliminating the complexity of routing associated with many forwarding schemes in DTN. Hikari uses nodes paths' information, advertised by special nodes in the system or predicted by the system itself, for optimizing the message dissemination process. We have used the Paris subway system, due to it's complexity, to validate Hikari and to analyze it's performance. We have shown that Hikari achieves a superior deliver rate while keeping redundant messages in the system low, which is ideal when using devices with limited resources for message dissemination.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.E92.D.1888/_p
Copy
@ARTICLE{e92-d_10_1888,
author={Sergio CARRILHO, Hiroshi ESAKI, },
journal={IEICE TRANSACTIONS on Information},
title={A Pub/Sub Message Distribution Architecture for Disruption Tolerant Networks},
year={2009},
volume={E92-D},
number={10},
pages={1888-1896},
abstract={Access to information is taken for granted in urban areas covered by a robust communication infrastructure. Nevertheless most of the areas in the world, are not covered by such infrastructures. We propose a DTN publish and subscribe system called Hikari, which uses nodes' mobility in order to distribute messages without using a robust infrastructure. The area of Disruption/Delay Tolerant Networks (DTN) focuses on providing connectivity to locations separated by networks with disruptions and delays. The Hikari system does not use node identifiers for message forwarding thus eliminating the complexity of routing associated with many forwarding schemes in DTN. Hikari uses nodes paths' information, advertised by special nodes in the system or predicted by the system itself, for optimizing the message dissemination process. We have used the Paris subway system, due to it's complexity, to validate Hikari and to analyze it's performance. We have shown that Hikari achieves a superior deliver rate while keeping redundant messages in the system low, which is ideal when using devices with limited resources for message dissemination.},
keywords={},
doi={10.1587/transinf.E92.D.1888},
ISSN={1745-1361},
month={October},}
Copy
TY - JOUR
TI - A Pub/Sub Message Distribution Architecture for Disruption Tolerant Networks
T2 - IEICE TRANSACTIONS on Information
SP - 1888
EP - 1896
AU - Sergio CARRILHO
AU - Hiroshi ESAKI
PY - 2009
DO - 10.1587/transinf.E92.D.1888
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E92-D
IS - 10
JA - IEICE TRANSACTIONS on Information
Y1 - October 2009
AB - Access to information is taken for granted in urban areas covered by a robust communication infrastructure. Nevertheless most of the areas in the world, are not covered by such infrastructures. We propose a DTN publish and subscribe system called Hikari, which uses nodes' mobility in order to distribute messages without using a robust infrastructure. The area of Disruption/Delay Tolerant Networks (DTN) focuses on providing connectivity to locations separated by networks with disruptions and delays. The Hikari system does not use node identifiers for message forwarding thus eliminating the complexity of routing associated with many forwarding schemes in DTN. Hikari uses nodes paths' information, advertised by special nodes in the system or predicted by the system itself, for optimizing the message dissemination process. We have used the Paris subway system, due to it's complexity, to validate Hikari and to analyze it's performance. We have shown that Hikari achieves a superior deliver rate while keeping redundant messages in the system low, which is ideal when using devices with limited resources for message dissemination.
ER -