We address the problem of perceived age estimation from face images, and propose a new semi-supervised approach involving two novel aspects. The first novelty is an efficient active learning strategy for reducing the cost of labeling face samples. Given a large number of unlabeled face samples, we reveal the cluster structure of the data and propose to label cluster-representative samples for covering as many clusters as possible. This simple sampling strategy allows us to boost the performance of a manifold-based semi-supervised learning method only with a relatively small number of labeled samples. The second contribution is to take the heterogeneous characteristics of human age perception into account. It is rare to misjudge the age of a 5-year-old child as 15 years old, but the age of a 35-year-old person is often misjudged as 45 years old. Thus, magnitude of the error is different depending on subjects' age. We carried out a large-scale questionnaire survey for quantifying human age perception characteristics, and propose to utilize the quantified characteristics in the framework of weighted regression. Consequently, our proposed method is expressed in the form of weighted least-squares with a manifold regularizer, which is scalable to massive datasets. Through real-world age estimation experiments, we demonstrate the usefulness of the proposed method.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Kazuya UEKI, Masashi SUGIYAMA, Yasuyuki IHARA, "A Semi-Supervised Approach to Perceived Age Prediction from Face Images" in IEICE TRANSACTIONS on Information,
vol. E93-D, no. 10, pp. 2875-2878, October 2010, doi: 10.1587/transinf.E93.D.2875.
Abstract: We address the problem of perceived age estimation from face images, and propose a new semi-supervised approach involving two novel aspects. The first novelty is an efficient active learning strategy for reducing the cost of labeling face samples. Given a large number of unlabeled face samples, we reveal the cluster structure of the data and propose to label cluster-representative samples for covering as many clusters as possible. This simple sampling strategy allows us to boost the performance of a manifold-based semi-supervised learning method only with a relatively small number of labeled samples. The second contribution is to take the heterogeneous characteristics of human age perception into account. It is rare to misjudge the age of a 5-year-old child as 15 years old, but the age of a 35-year-old person is often misjudged as 45 years old. Thus, magnitude of the error is different depending on subjects' age. We carried out a large-scale questionnaire survey for quantifying human age perception characteristics, and propose to utilize the quantified characteristics in the framework of weighted regression. Consequently, our proposed method is expressed in the form of weighted least-squares with a manifold regularizer, which is scalable to massive datasets. Through real-world age estimation experiments, we demonstrate the usefulness of the proposed method.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.E93.D.2875/_p
Copy
@ARTICLE{e93-d_10_2875,
author={Kazuya UEKI, Masashi SUGIYAMA, Yasuyuki IHARA, },
journal={IEICE TRANSACTIONS on Information},
title={A Semi-Supervised Approach to Perceived Age Prediction from Face Images},
year={2010},
volume={E93-D},
number={10},
pages={2875-2878},
abstract={We address the problem of perceived age estimation from face images, and propose a new semi-supervised approach involving two novel aspects. The first novelty is an efficient active learning strategy for reducing the cost of labeling face samples. Given a large number of unlabeled face samples, we reveal the cluster structure of the data and propose to label cluster-representative samples for covering as many clusters as possible. This simple sampling strategy allows us to boost the performance of a manifold-based semi-supervised learning method only with a relatively small number of labeled samples. The second contribution is to take the heterogeneous characteristics of human age perception into account. It is rare to misjudge the age of a 5-year-old child as 15 years old, but the age of a 35-year-old person is often misjudged as 45 years old. Thus, magnitude of the error is different depending on subjects' age. We carried out a large-scale questionnaire survey for quantifying human age perception characteristics, and propose to utilize the quantified characteristics in the framework of weighted regression. Consequently, our proposed method is expressed in the form of weighted least-squares with a manifold regularizer, which is scalable to massive datasets. Through real-world age estimation experiments, we demonstrate the usefulness of the proposed method.},
keywords={},
doi={10.1587/transinf.E93.D.2875},
ISSN={1745-1361},
month={October},}
Copy
TY - JOUR
TI - A Semi-Supervised Approach to Perceived Age Prediction from Face Images
T2 - IEICE TRANSACTIONS on Information
SP - 2875
EP - 2878
AU - Kazuya UEKI
AU - Masashi SUGIYAMA
AU - Yasuyuki IHARA
PY - 2010
DO - 10.1587/transinf.E93.D.2875
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E93-D
IS - 10
JA - IEICE TRANSACTIONS on Information
Y1 - October 2010
AB - We address the problem of perceived age estimation from face images, and propose a new semi-supervised approach involving two novel aspects. The first novelty is an efficient active learning strategy for reducing the cost of labeling face samples. Given a large number of unlabeled face samples, we reveal the cluster structure of the data and propose to label cluster-representative samples for covering as many clusters as possible. This simple sampling strategy allows us to boost the performance of a manifold-based semi-supervised learning method only with a relatively small number of labeled samples. The second contribution is to take the heterogeneous characteristics of human age perception into account. It is rare to misjudge the age of a 5-year-old child as 15 years old, but the age of a 35-year-old person is often misjudged as 45 years old. Thus, magnitude of the error is different depending on subjects' age. We carried out a large-scale questionnaire survey for quantifying human age perception characteristics, and propose to utilize the quantified characteristics in the framework of weighted regression. Consequently, our proposed method is expressed in the form of weighted least-squares with a manifold regularizer, which is scalable to massive datasets. Through real-world age estimation experiments, we demonstrate the usefulness of the proposed method.
ER -