We are interested in retrieving video shots or videos containing particular people from a video dataset. Owing to the large variations in pose, illumination conditions, occlusions, hairstyles and facial expressions, face tracks have recently been researched in the fields of face recognition, face retrieval and name labeling from videos. However, when the number of face tracks is very large, conventional methods, which match all or some pairs of faces in face tracks, will not be effective. Therefore, in this paper, an efficient method for finding a given person from a video dataset is presented. In our study, in according to performing research on face tracks in a single video, we also consider how to organize all the faces in videos in a dataset and how to improve the search quality in the query process. Different videos may include the same person; thus, the management of individuals in different videos will be useful for their retrieval. The proposed method includes the following three points. (i) Face tracks of the same person appearing for a period in each video are first connected on the basis of scene information with a time constriction, then all the people in one video are organized by a proposed hierarchical clustering method. (ii) After obtaining the organizational structure of all the people in one video, the people are organized into an upper layer by affinity propagation. (iii) Finally, in the process of querying, a remeasuring method based on the index structure of videos is performed to improve the retrieval accuracy. We also build a video dataset that contains six types of videos: films, TV shows, educational videos, interviews, press conferences and domestic activities. The formation of face tracks in the six types of videos is first researched, then experiments are performed on this video dataset containing more than 1 million faces and 218,786 face tracks. The results show that the proposed approach has high search quality and a short search time.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Pengyi HAO, Sei-ichiro KAMATA, "Efficiently Finding Individuals from Video Dataset" in IEICE TRANSACTIONS on Information,
vol. E95-D, no. 5, pp. 1280-1287, May 2012, doi: 10.1587/transinf.E95.D.1280.
Abstract: We are interested in retrieving video shots or videos containing particular people from a video dataset. Owing to the large variations in pose, illumination conditions, occlusions, hairstyles and facial expressions, face tracks have recently been researched in the fields of face recognition, face retrieval and name labeling from videos. However, when the number of face tracks is very large, conventional methods, which match all or some pairs of faces in face tracks, will not be effective. Therefore, in this paper, an efficient method for finding a given person from a video dataset is presented. In our study, in according to performing research on face tracks in a single video, we also consider how to organize all the faces in videos in a dataset and how to improve the search quality in the query process. Different videos may include the same person; thus, the management of individuals in different videos will be useful for their retrieval. The proposed method includes the following three points. (i) Face tracks of the same person appearing for a period in each video are first connected on the basis of scene information with a time constriction, then all the people in one video are organized by a proposed hierarchical clustering method. (ii) After obtaining the organizational structure of all the people in one video, the people are organized into an upper layer by affinity propagation. (iii) Finally, in the process of querying, a remeasuring method based on the index structure of videos is performed to improve the retrieval accuracy. We also build a video dataset that contains six types of videos: films, TV shows, educational videos, interviews, press conferences and domestic activities. The formation of face tracks in the six types of videos is first researched, then experiments are performed on this video dataset containing more than 1 million faces and 218,786 face tracks. The results show that the proposed approach has high search quality and a short search time.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.E95.D.1280/_p
Copy
@ARTICLE{e95-d_5_1280,
author={Pengyi HAO, Sei-ichiro KAMATA, },
journal={IEICE TRANSACTIONS on Information},
title={Efficiently Finding Individuals from Video Dataset},
year={2012},
volume={E95-D},
number={5},
pages={1280-1287},
abstract={We are interested in retrieving video shots or videos containing particular people from a video dataset. Owing to the large variations in pose, illumination conditions, occlusions, hairstyles and facial expressions, face tracks have recently been researched in the fields of face recognition, face retrieval and name labeling from videos. However, when the number of face tracks is very large, conventional methods, which match all or some pairs of faces in face tracks, will not be effective. Therefore, in this paper, an efficient method for finding a given person from a video dataset is presented. In our study, in according to performing research on face tracks in a single video, we also consider how to organize all the faces in videos in a dataset and how to improve the search quality in the query process. Different videos may include the same person; thus, the management of individuals in different videos will be useful for their retrieval. The proposed method includes the following three points. (i) Face tracks of the same person appearing for a period in each video are first connected on the basis of scene information with a time constriction, then all the people in one video are organized by a proposed hierarchical clustering method. (ii) After obtaining the organizational structure of all the people in one video, the people are organized into an upper layer by affinity propagation. (iii) Finally, in the process of querying, a remeasuring method based on the index structure of videos is performed to improve the retrieval accuracy. We also build a video dataset that contains six types of videos: films, TV shows, educational videos, interviews, press conferences and domestic activities. The formation of face tracks in the six types of videos is first researched, then experiments are performed on this video dataset containing more than 1 million faces and 218,786 face tracks. The results show that the proposed approach has high search quality and a short search time.},
keywords={},
doi={10.1587/transinf.E95.D.1280},
ISSN={1745-1361},
month={May},}
Copy
TY - JOUR
TI - Efficiently Finding Individuals from Video Dataset
T2 - IEICE TRANSACTIONS on Information
SP - 1280
EP - 1287
AU - Pengyi HAO
AU - Sei-ichiro KAMATA
PY - 2012
DO - 10.1587/transinf.E95.D.1280
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E95-D
IS - 5
JA - IEICE TRANSACTIONS on Information
Y1 - May 2012
AB - We are interested in retrieving video shots or videos containing particular people from a video dataset. Owing to the large variations in pose, illumination conditions, occlusions, hairstyles and facial expressions, face tracks have recently been researched in the fields of face recognition, face retrieval and name labeling from videos. However, when the number of face tracks is very large, conventional methods, which match all or some pairs of faces in face tracks, will not be effective. Therefore, in this paper, an efficient method for finding a given person from a video dataset is presented. In our study, in according to performing research on face tracks in a single video, we also consider how to organize all the faces in videos in a dataset and how to improve the search quality in the query process. Different videos may include the same person; thus, the management of individuals in different videos will be useful for their retrieval. The proposed method includes the following three points. (i) Face tracks of the same person appearing for a period in each video are first connected on the basis of scene information with a time constriction, then all the people in one video are organized by a proposed hierarchical clustering method. (ii) After obtaining the organizational structure of all the people in one video, the people are organized into an upper layer by affinity propagation. (iii) Finally, in the process of querying, a remeasuring method based on the index structure of videos is performed to improve the retrieval accuracy. We also build a video dataset that contains six types of videos: films, TV shows, educational videos, interviews, press conferences and domestic activities. The formation of face tracks in the six types of videos is first researched, then experiments are performed on this video dataset containing more than 1 million faces and 218,786 face tracks. The results show that the proposed approach has high search quality and a short search time.
ER -