In this paper, we propose a novel approach for presenting the local features of digital image using 1D Local Patterns by Multi-Scans (1DLPMS). We also consider the extentions and simplifications of the proposed approach into facial images analysis. The proposed approach consists of three steps. At the first step, the gray values of pixels in image are represented as a vector giving the local neighborhood intensity distrubutions of the pixels. Then, multi-scans are applied to capture different spatial information on the image with advantage of less computation than other traditional ways, such as Local Binary Patterns (LBP). The second step is encoding the local features based on different encoding rules using 1D local patterns. This transformation is expected to be less sensitive to illumination variations besides preserving the appearance of images embedded in the original gray scale. At the final step, Grouped 1D Local Patterns by Multi-Scans (G1DLPMS) is applied to make the proposed approach computationally simpler and easy to extend. Next, we further formulate boosted algorithm to extract the most discriminant local features. The evaluated results demonstrate that the proposed approach outperforms the conventional approaches in terms of accuracy in applications of face recognition, gender estimation and facial expression.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Wei ZHOU, Alireza AHRARY, Sei-ichiro KAMATA, "Image Description with Local Patterns: An Application to Face Recognition" in IEICE TRANSACTIONS on Information,
vol. E95-D, no. 5, pp. 1494-1505, May 2012, doi: 10.1587/transinf.E95.D.1494.
Abstract: In this paper, we propose a novel approach for presenting the local features of digital image using 1D Local Patterns by Multi-Scans (1DLPMS). We also consider the extentions and simplifications of the proposed approach into facial images analysis. The proposed approach consists of three steps. At the first step, the gray values of pixels in image are represented as a vector giving the local neighborhood intensity distrubutions of the pixels. Then, multi-scans are applied to capture different spatial information on the image with advantage of less computation than other traditional ways, such as Local Binary Patterns (LBP). The second step is encoding the local features based on different encoding rules using 1D local patterns. This transformation is expected to be less sensitive to illumination variations besides preserving the appearance of images embedded in the original gray scale. At the final step, Grouped 1D Local Patterns by Multi-Scans (G1DLPMS) is applied to make the proposed approach computationally simpler and easy to extend. Next, we further formulate boosted algorithm to extract the most discriminant local features. The evaluated results demonstrate that the proposed approach outperforms the conventional approaches in terms of accuracy in applications of face recognition, gender estimation and facial expression.
URL: https://global.ieice.org/en_transactions/information/10.1587/transinf.E95.D.1494/_p
Copy
@ARTICLE{e95-d_5_1494,
author={Wei ZHOU, Alireza AHRARY, Sei-ichiro KAMATA, },
journal={IEICE TRANSACTIONS on Information},
title={Image Description with Local Patterns: An Application to Face Recognition},
year={2012},
volume={E95-D},
number={5},
pages={1494-1505},
abstract={In this paper, we propose a novel approach for presenting the local features of digital image using 1D Local Patterns by Multi-Scans (1DLPMS). We also consider the extentions and simplifications of the proposed approach into facial images analysis. The proposed approach consists of three steps. At the first step, the gray values of pixels in image are represented as a vector giving the local neighborhood intensity distrubutions of the pixels. Then, multi-scans are applied to capture different spatial information on the image with advantage of less computation than other traditional ways, such as Local Binary Patterns (LBP). The second step is encoding the local features based on different encoding rules using 1D local patterns. This transformation is expected to be less sensitive to illumination variations besides preserving the appearance of images embedded in the original gray scale. At the final step, Grouped 1D Local Patterns by Multi-Scans (G1DLPMS) is applied to make the proposed approach computationally simpler and easy to extend. Next, we further formulate boosted algorithm to extract the most discriminant local features. The evaluated results demonstrate that the proposed approach outperforms the conventional approaches in terms of accuracy in applications of face recognition, gender estimation and facial expression.},
keywords={},
doi={10.1587/transinf.E95.D.1494},
ISSN={1745-1361},
month={May},}
Copy
TY - JOUR
TI - Image Description with Local Patterns: An Application to Face Recognition
T2 - IEICE TRANSACTIONS on Information
SP - 1494
EP - 1505
AU - Wei ZHOU
AU - Alireza AHRARY
AU - Sei-ichiro KAMATA
PY - 2012
DO - 10.1587/transinf.E95.D.1494
JO - IEICE TRANSACTIONS on Information
SN - 1745-1361
VL - E95-D
IS - 5
JA - IEICE TRANSACTIONS on Information
Y1 - May 2012
AB - In this paper, we propose a novel approach for presenting the local features of digital image using 1D Local Patterns by Multi-Scans (1DLPMS). We also consider the extentions and simplifications of the proposed approach into facial images analysis. The proposed approach consists of three steps. At the first step, the gray values of pixels in image are represented as a vector giving the local neighborhood intensity distrubutions of the pixels. Then, multi-scans are applied to capture different spatial information on the image with advantage of less computation than other traditional ways, such as Local Binary Patterns (LBP). The second step is encoding the local features based on different encoding rules using 1D local patterns. This transformation is expected to be less sensitive to illumination variations besides preserving the appearance of images embedded in the original gray scale. At the final step, Grouped 1D Local Patterns by Multi-Scans (G1DLPMS) is applied to make the proposed approach computationally simpler and easy to extend. Next, we further formulate boosted algorithm to extract the most discriminant local features. The evaluated results demonstrate that the proposed approach outperforms the conventional approaches in terms of accuracy in applications of face recognition, gender estimation and facial expression.
ER -