The search functionality is under construction.
The search functionality is under construction.

Open Access
Machine Learning in Computer-Aided Diagnosis of the Thorax and Colon in CT: A Survey

Kenji SUZUKI

  • Full Text Views

    81

  • Cite this
  • Free PDF (3.1MB)

Summary :

Computer-aided detection (CADe) and diagnosis (CAD) has been a rapidly growing, active area of research in medical imaging. Machine leaning (ML) plays an essential role in CAD, because objects such as lesions and organs may not be represented accurately by a simple equation; thus, medical pattern recognition essentially require “learning from examples.” One of the most popular uses of ML is the classification of objects such as lesion candidates into certain classes (e.g., abnormal or normal, and lesions or non-lesions) based on input features (e.g., contrast and area) obtained from segmented lesion candidates. The task of ML is to determine “optimal” boundaries for separating classes in the multi-dimensional feature space which is formed by the input features. ML algorithms for classification include linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), multilayer perceptrons, and support vector machines (SVM). Recently, pixel/voxel-based ML (PML) emerged in medical image processing/analysis, which uses pixel/voxel values in images directly, instead of features calculated from segmented lesions, as input information; thus, feature calculation or segmentation is not required. In this paper, ML techniques used in CAD schemes for detection and diagnosis of lung nodules in thoracic CT and for detection of polyps in CT colonography (CTC) are surveyed and reviewed.

Publication
IEICE TRANSACTIONS on Information Vol.E96-D No.4 pp.772-783
Publication Date
2013/04/01
Publicized
Online ISSN
1745-1361
DOI
10.1587/transinf.E96.D.772
Type of Manuscript
INVITED SURVEY PAPER
Category

Authors

Keyword