The search functionality is under construction.

Author Search Result

[Author] Ai-ichiro SASAKI(4hit)

1-4hit
  • Machine-Learning Approach for Solving Inverse Problems in Magnetic-Field-Based Positioning Open Access

    Ai-ichiro SASAKI  Ken FUKUSHIMA  

     
    PAPER-General Fundamentals and Boundaries

      Pubricized:
    2021/12/13
      Vol:
    E105-A No:6
      Page(s):
    994-1005

    Magnetic fields are often utilized for position sensing of mobile devices. In typical sensing systems, multiple sensors are used to detect magnetic fields generated by target devices. To determine the positions of the devices, magnetic-field data detected by the sensors must be converted to device-position data. The data conversion is not trivial because it is a nonlinear inverse problem. In this study, we propose a machine-learning approach suitable for data conversion required in the magnetic-field-based position sensing of target devices. In our approach, two different sets of training data are used. One of the training datasets is composed of raw data of magnetic fields to be detected by sensors. The other set is composed of logarithmically represented data of the fields. We can obtain two different predictor functions by learning with these training datasets. Results show that the prediction accuracy of the target position improves when the two different predictor functions are used. Based on our simulation, the error of the target position estimated with the predictor functions is within 10cm in a 2m × 2m × 2m cubic space for 87% of all the cases of the target device states. The computational time required for predicting the positions of the target device is 4ms. As the prediction method is accurate and rapid, it can be utilized for the real-time tracking of moving objects and people.

  • High-Quality Organic 4-Dimethylamino-N-Methyl-4-Stilbazolium Tosylate (DAST) Crystal for Electro-Optic Measurement

    Hiroaki ADACHI  Kazuaki NAGAOKA  Fumi TSUNESADA  Masashi YOSHIMURA  Yusuke MORI  Takatomo SASAKI  Ai-ichiro SASAKI  Tadao NAGATSUMA  Yuta OCHIAI  Noboru FUKASAKU  

     
    PAPER-Measurements Techniques

      Vol:
    E86-C No:7
      Page(s):
    1352-1358

    We present a new method called the slope nucleation method (SNM) for the growth of high-quality organic 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) crystals. The SNM features the ability to control the nucleation position and the growth orientation of DAST crystals in spontaneous nucleated growth. X-ray diffraction (XRD) rocking curve measurements indicate that the SNM is effective for obtaining high-quality DAST crystals as compared to conventional spontaneous nucleation methods. We evaluated the electro-optic (EO) properties of DAST crystals by an external EO probing technique because DAST crystals are expected to be used in transverse-field probing. DAST crystals exhibits nearly five-times EO sensitivity enhancement as compared to inorganic KTiOPO4 (KTP) crystals at 90 kHz. The larger EO signal power obtained from the DAST crystal was almost constant at low frequencies (30 Hz to 90 kHz), whereas the KTP crystal could not respond below 180 Hz. We also observed excellent signals at all measured points due to the improved crystallinity of the crystal grown by the SNM.

  • 10-Mbps Short-Range Baseband Wireless Communications via Quasi-Static Electric Fields

    Ai-ichiro SASAKI  Akinori FURUYA  Mitsuru SHINAGAWA  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E93-B No:1
      Page(s):
    144-153

    We propose a novel short-range wireless communications technology that uses quasi-static electric fields; it enables data communication between devices separated by up to 10 cm via dielectric media at a speed of 10 Mbps. It is considered to be a secure wireless technology since communication area is restricted to below about 10 cm. To suppress electromagnetic radiation, we adopted a baseband transmission scheme in which the quasi-static electric field is directly modulated by 10 BASE-T data signals. Since the spectra of the data signals are concentrated to below 20 MHz, the amplitude of the electric field rapidly decreases outside the communication area. This contributes to enhancing security of the communications system. In this paper, we explain a basic principle of the short-range wireless communications technology. Since baseband data signals are carried by the quasi-static electric field, the quality of the communication is easily degraded by the existence of the earth ground. To isolate the communications system from the earth ground, we introduce a novel electro-optic sensor to receive the quasi-static electric field. With the electro-optic sensor, stable data communication is possible at 10 Mbps via dielectric materials, such as a wooden table.

  • Electric-Field Scanning System Using Electro-Optic Sensor

    Ai-ichiro SASAKI  Tadao NAGATSUMA  

     
    INVITED PAPER-Measurements Techniques

      Vol:
    E86-C No:7
      Page(s):
    1345-1351

    To perform a high-speed measurement of a two-dimensional electric-field distribution, we developed an electric-field scanning system using a large-aperture electro-optic crystal and a laser-beam scanner. In the system, a two-dimensional electric-field image projected onto the crystal is read off using beam scanning through an electro-optic effect. With the imaging system, only 20 to 40 seconds are needed to obtain both millimeter-wave amplitude and phase images of a 20 30 mm area with a pixel spacing of 0.5 mm. We measured radiation patterns of a 10-GHz dipole antenna and compared them with simulation results to investigate a disturbance of the patterns inside the crystal. Profiles of a 120-GHz millimeter-wave beam were also measured to determine the effects of a dielectric lens used to focus the beam. Furthermore, we applied the system to imaging several objects with 180-GHz millimeter waves and experimentally showed that it is a valid means for a non-destructive inspection of hidden objects.