The search functionality is under construction.

Author Search Result

[Author] Akihiro KADOHATA(4hit)

1-4hit
  • Multi-Layer Hypercube Photonic Network Architecture for Intra-Datacenter Network

    Toshikazu SAKANO  Akihiro KADOHATA  Yoshiaki SONE  Atsushi WATANABE  Masahiko JINNO  

     
    PAPER

      Vol:
    E94-B No:4
      Page(s):
    910-917

    The popularity of cloud computing services is driving the boom in building mega-datacenters. This trend is forcing significant increases in the required scale of the intra-datacenter network. To meet this requirement, this paper proposes a photonic network architecture based on a multi-layer hypercube topology. The proposed architecture uses the Cyclic-Frequency Arrayed Waveguide Grating (CF-AWG) device to realize a multi-layer hypercube and properly combines several multiplexing systems that include Time Division Multiplexing (TDM), Wavelength Division Multiplexing (WDM), Wave-Band Division Multiplexing (WBDM) and Space Division Multiplexing (SDM). An estimation of the achievable network scale reveals that the proposed architecture can achieve a Peta-bit to Exa-bit class, large scale hypercube network with existing technologies.

  • Pre-Adjustment Rerouting for Wavelength Defragmentation in Optical Transparent WDM Networks

    Akihiro KADOHATA  Atsushi WATANABE  Akira HIRANO  Hiroshi HASEGAWA  Ken-ichi SATO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E98-B No:10
      Page(s):
    2014-2021

    We propose a new extension to reconfiguration algorithms used to address wavelength defragmentation to enhance the path accommodation efficiency in optical transparent wavelength division multiplexing networks. The proposed algorithm suppresses the number of fibers employed to search for a reconfigurable wavelength channel by combining routes between the target path and the existing path in a reconfigured wavelength channel. This paper targets three main phases in reconfiguration: i) the reconfiguration trigger; ii) redesign of the wavelength path; and iii) migrating the wavelength paths. The proposed and conventional algorithms are analyzed from the viewpoints of the number of fibers, accommodation rate and the number of migrating sequences. Numerical evaluations show that the number of fibers is suppressed by 9%, and that the accommodation efficiency is increased by approximately 5%-8% compared to when reconfiguration is not performed.

  • Differential Reliability Path Accommodation Design and Reconfiguration in Virtualized Multi-Layer Transport Network

    Akihiro KADOHATA  Takafumi TANAKA  Atsushi WATANABE  Akira HIRANO  Hiroshi HASEGAWA  Ken-ichi SATO  

     
    PAPER

      Vol:
    E98-B No:11
      Page(s):
    2151-2159

    Multi-layer transport networks that utilize sub-lambda paths over a wavelength path have been shown to be effective in accommodating traffic with various levels of granularity. For different service requirements, a virtualized network was proposed where the infrastructure is virtually sliced to accommodate different levels of reliability. On the other hand, network reconfiguration is a promising candidate for quasi-dynamic and multi-granular traffic. Reconfiguration, however, incurs some risks such as service disruption and fluctuations in delay. There has not yet been any study on accommodating and reconfiguring paths according to different service classes in multi-layer transport networks. In this paper, we propose differentiated reconfiguration to address the trade-off relationship between accommodation efficiency and disruption risk in virtualized multi-layer transport networks that considers service classes defined as a combination of including or excluding a secondary path and allowing or not allowing reconfiguration. To implement the proposed network, we propose a multi-layer redundant path accommodation design and reconfiguration algorithm. A reliability evaluation algorithm is also introduced. Numerical evaluations show that when all classes are divided equally, equipment cost can be reduced approximately by 6%. The proposed reconfigurable networks are shown to be a cost effective solution that maintains reliability.

  • Rapid Restoration Sequence of Fiber Links and Communication Paths from Catastrophic Failures

    Akihiro KADOHATA  Takafumi TANAKA  Wataru IMAJUKU  Fumikazu INUZUKA  Atsushi WATANABE  

     
    PAPER

      Vol:
    E99-A No:8
      Page(s):
    1510-1517

    This paper addresses the issue of implementing a sequence for restoring fiber links and communication paths that have failed due to a catastrophe. We present a mathematical formulation to minimize the total number of steps needed to restore communication paths. We also propose two heuristic algorithms: Minimum spanning tree - based degree order restoration and Congestion link order restoration. Numerical evaluations show that integer linear programming based order restoration yields the fewest number of restoration steps, and that the proposed heuristic algorithms, when used properly with regard to the accommodation rate, are highly effective for real-world networks.