The search functionality is under construction.

Author Search Result

[Author] Wataru IMAJUKU(7hit)

1-7hit
  • GMPLS Interoperability Tests in Kei-han-na Info-Communication Open Laboratory on JGN II Network

    Satoru OKAMOTO  Wataru IMAJUKU  Tomohiro OTANI  Itaru NISHIOKA  Akira NAGATA  Mikako NANBA  Hideki OTSUKI  Masatoshi SUZUKI  Naoaki YAMANAKA  

     
    SURVEY PAPER-Standard and Interoperability

      Vol:
    E90-B No:8
      Page(s):
    1936-1943

    Generalized Multi-protocol Label Switching (GMPLS) technologies are expected a key technology that creates high-performance Internet backbone networks. There were many GMPLS interoperability trials. However, most of them reported the successful results only. How to set up a trial network and how to test it was generally not discussed. In this paper, as a kind of tutorial, detailed GMPLS field trials in the National Institute of Information and Communications Technology (NICT) Kei-han-na Info-Communication Open Laboratory, Interoperability Working Group (WG) are reported. The interoperability WG is aiming at the leading edge GMPLS protocol based Inter-Carrier Interface that utilizes wide-bandwidth, cost-effective photonic technology to implement IP-centric managed networks. The interoperability WG is a consortium for researching the GMPLS protocol and advancing a de facto standard in this area. Its experimental results, new ideas, and protocols are submitted to standardization bodies such as the International Telecommunications Union-Telecommunication standardization sector (ITU-T), the Internet Engineering Task Force (IETF), and the Optical Internetworking Forum (OIF). This paper introduces the activities of the interoperability WG; they include a nationwide GMPLS field trial using the JGN II network with multi-vendor, multi-switching-capable equipment and a GMPLS multi routing area trial that used a multi-vendor lambda-switching-capable network.

  • GMPLS Based Survivable Photonic Network Architecture

    Wataru IMAJUKU  Takuya OHARA  Yoshiaki SONE  Ippei SHAKE  Yasunori SAMESHIMA  Masahiko JINNO  

     
    SURVEY PAPER-Protection and Restoration

      Vol:
    E90-B No:8
      Page(s):
    1952-1959

    The objective of this paper is to survey the Generalized Multi-Protocol Label Switching (GMPLS) based recovery technology for optical transport networks. This paper introduces standardization activities of the GMPLS based recovery technology in the Internet Engineering Task Force (IETF), and recent progress of related experiments. In addition, this paper extracts requirements for the GMPLS based recovery technology through the evaluation of existing network elements, which can be client nodes of the optical transport networks. The results of field evaluations on the GMPLS based recovery technology are also introduced in this paper. Then, this paper addresses the issues for future deployment of the GMPLS based recovery technology for the optical transport networks.

  • Highly-Reliable and Fast M:N End-to-End Restoration Scheme for Photonic IP Networks

    Wataru IMAJUKU  Yoshiaki SONE  Naohide NAGATSU  Akio SAHARA  Yoshihiro TAKIGAWA  

     
    PAPER

      Vol:
    E88-B No:10
      Page(s):
    3914-3921

    The concept of an optical path layer has become increasingly attractive with the growth of traffic in the backbone network. The recent advances in optical switching technology support the deployment of optical cross-connect (OXC) nodes and the construction of large-scale optical path networks. This paper proposes a highly-reliable and fast pre-assigned restoration scheme for optical path networks. To achieve the pre-assigned restoration scheme, this paper investigates the extension of the Generalized Multi-Protocol Label Switching (GMPLS) protocol functionality considering the interoperability with GMPLS capable IP routers in the future. This paper also proposes a new network control architecture called the "partition model" through discussion of network architecture. We clarify that the M:N end-to-end restoration scheme achieves efficient resource usage and management of the network especially in the "partitioned model" network. With the finite design of the GMPLS protocol extension based on the M:N end-to-end restoration scheme, we successfully achieve an intelligent protocol that guarantees 100% recovery against single link failure and is capable of protection grade fast restoration of the optical path less than 50 msec. To our knowledge, this is the first demonstration of GMPLS-controlled protection grade fast optical path restoration.

  • GMPLS-Based Multiple Failure Recovery Employing Restoration Scheme Escalation in Optical Path Networks

    Yoshiaki SONE  Wataru IMAJUKU  Naohide NAGATSU  Masahiko JINNO  

     
    PAPER

      Vol:
    E92-B No:1
      Page(s):
    46-58

    Bolstering survivable backbone networks against multiple failures is becoming a common concern among telecom companies that need to continue services even when disasters occur. This paper presents a multiple-failure recovery scheme that considers the operation and management of optical paths. The presented scheme employs scheme escalation from pre-planned restoration to full rerouting. First, the survivability of this scheme against multiple failures is evaluated considering operational constraints such as route selection, resource allocation, and the recovery order of failed paths. The evaluation results show that scheme escalation provides a high level of survivability even under operational constraints, and this paper quantitatively clarifies the impact of these various operational constraints. In addition, the fundamental functions of the scheme escalation are implemented in the Generalized Multi-Protocol Label Switching control plane and verified in an optical-cross-connect-based network.

  • Rapid Restoration Sequence of Fiber Links and Communication Paths from Catastrophic Failures

    Akihiro KADOHATA  Takafumi TANAKA  Wataru IMAJUKU  Fumikazu INUZUKA  Atsushi WATANABE  

     
    PAPER

      Vol:
    E99-A No:8
      Page(s):
    1510-1517

    This paper addresses the issue of implementing a sequence for restoring fiber links and communication paths that have failed due to a catastrophe. We present a mathematical formulation to minimize the total number of steps needed to restore communication paths. We also propose two heuristic algorithms: Minimum spanning tree - based degree order restoration and Congestion link order restoration. Numerical evaluations show that integer linear programming based order restoration yields the fewest number of restoration steps, and that the proposed heuristic algorithms, when used properly with regard to the accommodation rate, are highly effective for real-world networks.

  • Optical Networks Functional Evolution and Control Technologies

    Peter SZEGEDI  Tomasz GAJEWSKI  Wataru IMAJUKU  Satoru OKAMOTO  

     
    SURVEY PAPER-Standard and Interoperability

      Vol:
    E90-B No:8
      Page(s):
    1944-1951

    In this paper the current trends in the optical networking including the physical components, technologies and control architectures are discussed. The possible interaction schemes and implementation models of the automatic communication between applications and network as well as between ASON/GMPLS based network domains are proposed. Finally, the related research activities based on simulation results of control plane dimensioning are illustrated and real test bed experiments on OIF worldwide interoperability demonstration and the ongoing European IST project MUPBED are disseminated.

  • Performance Evaluation of Dynamic Multi-Layer Routing Schemes in Optical IP Networks

    Eiji OKI  Kohei SHIOMOTO  Masaru KATAYAMA  Wataru IMAJUKU  Naoaki YAMANAKA  Yoshihiro TAKIGAWA  

     
    PAPER-Network

      Vol:
    E87-B No:6
      Page(s):
    1577-1583

    This paper presents two dynamic multi-layer routing policies for optical IP Networks. Both policies first try to allocate a newly requested electrical path to an existing optical path that directly connects the source and destination nodes. If such a path is not available, the two policies employ different procedures. Policy 1, which has been published already, tries to find available existing optical paths with two or more hops that connect the source and destination nodes. Policy 2, which is proposed in this paper, tries to establish a new one-hop optical path between source and destination nodes. The performances of the two routing policies are evaluated. Simulation results suggest that policy 2 outperforms policy 1 if p is large, where p is the number of packet-switching-capable ports; the reverse is true only if p is small. We observe that p is the key factor in choosing the most appropriate routing policy.