The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Masaru KATAYAMA(12hit)

1-12hit
  • Passive Optical Metro Network Based on NG-PON2 System to Support Cloud Edges

    Kyota HATTORI  Masahiro NAKAGAWA  Masaru KATAYAMA  Jun-ichi KANI  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2018/06/28
      Vol:
    E102-B No:1
      Page(s):
    88-96

    The traffic of the future metro network will dynamically change not only in volume but also in destination to support the application of virtualization technology to network edge equipment such as cloud edges to achieve cost-effectiveness. Therefore, the future metro network will have to accommodate traffic cost-effectively, even though both the traffic volume and the traffic destination will change dynamically. To handle to this trend, in this paper, we propose a future metro network architecture based on Next-Generation Passive Optical Network Stage 2 systems that offers cost-effectiveness while supporting virtual machine migration of cloud edges. The basic idea of the proposed method is sharing a burst-mode receiver between the continuous-mode transmitters and burst-mode transmitters. In this paper, we show the feasibility and effectiveness of the proposed method with experiments on prototype systems, and simulations for the preliminary evaluation of network capital expenditure.

  • Bufferless Bidirectional Multi-Ring Networks with Sharing an Optical Burst Mode Transceiver for Any Route

    Kyota HATTORI  Masahiro NAKAGAWA  Toshiya MATSUDA  Masaru KATAYAMA  Katsutoshi KODA  

     
    PAPER

      Pubricized:
    2017/02/08
      Vol:
    E100-D No:5
      Page(s):
    948-962

    Improvement of conventional networks with an incremental approach is an important design method for the development of the future internet. For this approach, we are developing a future aggregation network based on passive optical network (PON) technology to achieve both cost-effectiveness and high reliability. In this paper, we propose a timeslot (TS) synchronization method for sharing a TS from an optical burst mode transceiver between any route of arbitrary fiber length by changing both the route of the TS transmission and the TS control timing on the optical burst mode transceiver. We show the effectiveness of the proposed method for exchanging TSs in bidirectional bufferless wavelength division multiplexing (WDM) and time division multiplexing (TDM) multi-ring networks under the condition of the occurrence of a link failure through prototype systems. Also, we evaluate the reduction of the required number of optical interfaces in a multi-ring network by applying the proposed method.

  • A 10 Gb/s Firewall System for Network Security in Photonic Era

    Masaru KATAYAMA  Hidenori KAI  Junichi YOSHIDA  Masaaki INAMI  Hiroki YAMADA  Kohei SHIOMOTO  Naoaki YAMANAKA  

     
    INVITED PAPER

      Vol:
    E88-B No:5
      Page(s):
    1914-1920

    Although the Internet is playing an increasingly significant role in global communication, it remains vulnerable to malicious traffic such as worms and DoS/DDoS attacks. In the last few years, the emergence of high speed active worms, such as Code Red II, Nimda, SQL Slammer and MS Blaster, has become a serious issue. These worms cause serious damage to communication networks throughout the world by using up network bandwidth. In addition, since conventional firewall systems are located just in front of the server and do not prevent malicious traffic from entering the network, they cannot prevent such network congestion. Therefore, the firewall between domains or between core routers should play important roles in the photonic networks. We have developed a prototype system of a network firewall using reconfigurable processors. In this paper, we overview the developed system and present its evaluation results.

  • Hierarchical Time-Slot Allocation for Dynamic Bandwidth Control in Optical Layer-2 Switch Network

    Masahiro NAKAGAWA  Kyota HATTORI  Naoki KIMISHIMA  Masaru KATAYAMA  Akira MISAWA  

     
    PAPER

      Vol:
    E97-B No:7
      Page(s):
    1303-1312

    We are developing an optical layer-2 switch network that uses both wavelength-division multiplexing and time-division multiplexing technologies for efficient traffic aggregation in metro networks. For efficient traffic aggregation, path bandwidth control is key because it strongly affects bandwidth utilization efficiency. We propose a fast time-slot allocation method that uses hierarchical calculation, which divides the network-wide bandwidth-allocation problem into small-scale local bandwidth-allocation problems and solves them independently. This method has a much shorter computation complexity and enables dynamic path bandwidth control in large-scale networks. Our network will be able to efficiently accommodate dynamic traffic with limited resources by using the proposed method, leading to cost-effective metro networks.

  • Resource Management Architecture of Metro Aggregation Network for IoT Traffic Open Access

    Akira MISAWA  Masaru KATAYAMA  

     
    INVITED PAPER

      Pubricized:
    2017/09/19
      Vol:
    E101-B No:3
      Page(s):
    620-627

    IoT (Internet of Things) services are emerging and the bandwidth requirements for rich media communication services are increasing exponentially. We propose a virtual edge architecture comprising computation resource management layers and path bandwidth management layers for easy addition and reallocation of new service node functions. These functions are performed by the Virtualized Network Function (VNF), which accommodates terminals covering a corresponding access node to realize fast VNF migration. To increase network size for IoT traffic, VNF migration is limited to the VNF that contains the active terminals, which leads to a 20% reduction in the computation of VNF migration. Fast dynamic bandwidth allocation for dynamic bandwidth paths is realized by proposed Hierarchical Time Slot Allocation of Optical Layer 2 Switch Network, which attain the minimum calculation time of less than 1/100.

  • Performance Evaluation of Dynamic Multi-Layer Routing Schemes in Optical IP Networks

    Eiji OKI  Kohei SHIOMOTO  Masaru KATAYAMA  Wataru IMAJUKU  Naoaki YAMANAKA  Yoshihiro TAKIGAWA  

     
    PAPER-Network

      Vol:
    E87-B No:6
      Page(s):
    1577-1583

    This paper presents two dynamic multi-layer routing policies for optical IP Networks. Both policies first try to allocate a newly requested electrical path to an existing optical path that directly connects the source and destination nodes. If such a path is not available, the two policies employ different procedures. Policy 1, which has been published already, tries to find available existing optical paths with two or more hops that connect the source and destination nodes. Policy 2, which is proposed in this paper, tries to establish a new one-hop optical path between source and destination nodes. The performances of the two routing policies are evaluated. Simulation results suggest that policy 2 outperforms policy 1 if p is large, where p is the number of packet-switching-capable ports; the reverse is true only if p is small. We observe that p is the key factor in choosing the most appropriate routing policy.

  • Dynamic Subwavelength Protection Using High-Speed Optical Switches for Optical Metro Networks

    Masahiro NAKAGAWA  Kyota HATTORI  Toshiya MATSUDA  Masaru KATAYAMA  Katsutoshi KODA  

     
    PAPER

      Vol:
    E99-C No:2
      Page(s):
    203-211

    Flexible resource utilization in terms of adaptive use of optical bandwidth with agile reconfigurability is key for future metro networks. To address this issue, we focus on optical subwavelength switched network architectures that leverage high-speed optical switching technologies and can accommodate dynamic traffic cost-effectively. Although optical subwavelength switched networks have been attracting attention, most conventional studies apply static (pre-planned) protection scenarios in the networks of limited sizes. In this paper, we discuss optical switch requirements, the use of transceivers, and protection schemes to cost-effectively create large-scale reliable metro networks. We also propose a cost-effective adaptive protection scheme appropriate for optical subwavelength switched networks using our fast time-slot allocation algorithm. The proposed scheme periodically re-optimizes the bandwidth of both working and protection paths to prevent bandwidth resources from being wasted. The numerical examples verify the feasibility of our proposed scheme and the impact on network resources.

  • Scalable Centralized Control Architecture of Virtual Switch on Large-Scale Network

    Hiroki DATE  Kenichi HIGUCHI  Masaru KATAYAMA  Katsutoshi KODA  

     
    PAPER

      Vol:
    E98-B No:11
      Page(s):
    2160-2170

    Router virtualization is becoming more common as a method that uses network (NW) equipment effectively and robustly similar to server virtualization. Edge routers, which are gateways of core NWs, should be virtualized because they have many functions and resources just as servers do. To virtualize edge routers, a metro NW, which is a wide area layer-2 NW connecting each user's residential gateway to edge routers, must trace dynamic edge router re-allocation by changing the route of each Ethernet flow. Therefore, we propose a scalable centralized control architecture of a virtual layer-2 switch on a metro NW to trace virtual router re-allocation and use metro NW equipment effectively. The proposed scalable control architecture improves the centralized route control performance by processing in parallel on a flow-by-flow basis taking into account route information even in the worst case where edge routers fail. In addition, the architecture can equalize the load among parallel processes dynamically by using two proposed load re-allocation methods to increase the route control performance stably while minimizing the amount of resources for the control. We evaluate the scalability of the proposed architecture through theoretical analysis and experiments on a prototype and show that the proposed architecture increases the number of flows accommodated in a metro NW. Moreover, we evaluate the load re-allocation methods through simulation and show that they can evenly distribute the load among parallel processes. Finally, we show that the proposed architecture can be applied to not only large-scale metro NWs but also to data center NWs, which have recently become an important type of large-scale layer-2 NW.

  • Optical Layer 2 Switch Network with Bufferless Optical TDM and Dynamic Bandwidth Allocation

    Kyota HATTORI  Toru HOMEMOTO  Masahiro NAKAGAWA  Naoki KIMISHIMA  Masaru KATAYAMA  Akira MISAWA  

     
    PAPER

      Vol:
    E99-C No:2
      Page(s):
    189-202

    The traffic of the future aggregation network will dynamically change not only in volume but also destination to support the application of virtualization technology to network edge equipment to achieve cost-effectiveness. Therefore, future aggregation network will have to accommodate this traffic cost-effectively, despite dynamic changes in both volume and destination. To correspond to this trend, in this paper, we propose an optical layer 2 switch network based on bufferless optical time division multiplexing (TDM) and dynamic bandwidth allocation to achieve a future aggregation network cost-effectively. We show here that our proposed network architecture effectively reduced the number of wavelengths and optical interfaces by application of bufferless optical TDM technology and dynamic bandwidth allocation to the aggregation network.

  • 200-ps Interchip-Delay Field-Programmable MCM for Telecommunications

    Masaru KATAYAMA  Takahiro MUROOKA  Toshiaki MIYAZAKI  Kazuhiro SHIRAKAWA  Kazuhiro HAYASHI  Takaki ICHIMORI  Kennosuke FUKAMI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E81-A No:12
      Page(s):
    2673-2678

    We have developed a Field-Programmable Multi-Chip Module (FPMCM) whose component is the telecommunication-oriented FPGAs, called PROTEUS. The module consists of 3 3 PROTEUS FPGAs and its size is 114 mm square. Each PROTEUS chip is mounted on the MCM substrate using Tape Automated Bonding (TAB) technology so as to minimize the size of the MCM and the production cost. The interconnection topology among the FPGAs is a simple mesh. However, the connection can be changed logically, because PROTEUS itself has a special inter-I/O bypass resource in it. Using this mechanism, the interchip connection delay can be reduced without sacrificing the flexibility, compared to the previous FPMCM implementation using some other interconnection switches which often have a large propagation delay. The interchip connection delay is 200 ps. We have also developed a rapid prototyping system comprising several MCMs, and implemented telecommunication circuits in it.

  • Virtual Edge Architecture with Optical Bandwidth Resource Control

    Akira MISAWA  Konomi MOCHIZUKI  Hideo TSUCHIYA  Masahiro NAKAGAWA  Kyota HATTORI  Masaru KATAYAMA  Jun-ichi KANI  

     
    PAPER-Network

      Vol:
    E99-B No:8
      Page(s):
    1805-1812

    A virtual network edge using live migration of virtualized network functions (VNFs) can be expected to reduce computation time and save resources instead of conventional network edge routers that have complex functions. Wavelength-division-multiplexing/time-division-multiplexing (WDM/TDM) photonic switching technology for metro ring networks is proposed to provide fast bandwidth resource allocation for rapidly changing service-flow demand. However, there are no reports on the coexistence of high-speed path switching for live migration with fast bandwidth resource allocation, as far as we know. We propose an architecture that achieves both high-speed path switching and fast dynamic bandwidth allocation control for service flows with in-service live migration. The feature of this architecture is that the VNF for the virtual edge corresponds to each 10-gigabit Ethernet-passive optical network (10G-EPON) and fast route change can be achieved with a simple point-to-point path between VNFs and optical line terminals (OLTs). The second feature is that the live migration of a VNF is limited to a part of it that contains a larger number of subscribers. Owing to the reduction in the number of total paths, fast resource allocation can be provided.

  • Delay Calculation Method for SRAM-based FPGAs

    Masaru KATAYAMA  Atsushi TAKAHARA  Toshiaki MIYAZAKI  Kennosuke FUKAMI  

     
    PAPER

      Vol:
    E80-A No:10
      Page(s):
    1789-1794

    We propose a propagation delay model for SRAM-based FPGAs. It is a simplified Elmore delay model with a linear fan-out function. Therefore, the computational complexity is small. In order to ensure calculation accuracy, the model parameters are extracted from real layout data. The average model error is 4% compared to actual delays. The model is applicable for delay estimation in a router and as a tool for static calculation of critical path delay.