The search functionality is under construction.

Author Search Result

[Author] Akira NISHIMURA(2hit)

1-2hit
  • Information Hiding and Its Criteria for Evaluation Open Access

    Keiichi IWAMURA  Masaki KAWAMURA  Minoru KURIBAYASHI  Motoi IWATA  Hyunho KANG  Seiichi GOHSHI  Akira NISHIMURA  

     
    INVITED PAPER

      Pubricized:
    2016/10/07
      Vol:
    E100-D No:1
      Page(s):
    2-12

    Within information hiding technology, digital watermarking is one of the most important technologies for copyright protection of digital content. Many digital watermarking schemes have been proposed in academia. However, these schemes are not used, because they are not practical; one reason for this is that the evaluation criteria are loosely defined. To make the evaluation more concrete and improve the practicality of digital watermarking, watermarking schemes must use common evaluation criteria. To realize such criteria, we organized the Information Hiding and its Criteria for Evaluation (IHC) Committee to create useful, globally accepted evaluation criteria for information hiding technology. The IHC Committee improves their evaluation criteria every year, and holds a competition for digital watermarking based on state-of-the-art evaluation criteria. In this paper, we describe the activities of the IHC Committee and its evaluation criteria for digital watermarking of still images, videos, and audio.

  • Reversible Audio Data Hiding Based on Variable Error-Expansion of Linear Prediction for Segmental Audio and G.711 Speech

    Akira NISHIMURA  

     
    PAPER

      Pubricized:
    2015/10/21
      Vol:
    E99-D No:1
      Page(s):
    83-91

    Reversible data hiding is a technique in which hidden data are embedded in host data such that the consistency of the host is perfectly preserved and its data are restored during extraction of the hidden data. In this paper, a linear prediction technique for reversible data hiding of audio waveforms is improved. The proposed variable expansion method is able to control the payload size through varying the expansion factor. The proposed technique is combined with the prediction error expansion method. Reversible embedding, perfect payload detection, and perfect recovery of the host signal are achieved for a framed audio signal. A smaller expansion factor results in a smaller payload size and less degradation in the stego audio quality. Computer simulations reveal that embedding a random-bit payload of less than 0.4 bits per sample into CD-format music signals provide stego audio with acceptable objective quality. The method is also applied to G.711 µ-law-coded speech signals. Computer simulations reveal that embedding a random-bit payload of less than 0.1 bits per sample into speech signals provide stego speech with good objective quality.