1-4hit |
Akira OKADA Hiromasa TANOBE Morito MATSUOKA
We propose an information-sharing network system, capable of forming and dynamically reconfiguring multiple information-sharing groups on the same network platform by using wavelength routing and distributed shared memory technologies. The network system comprises information-sharing terminal nodes equipped with a shared memory and a wavelength-tunable transmitter, network management terminal and an arrayed-waveguide grating (AWG). The information-sharing terminal nodes are connected to an AWG by a pair of optical fibers, forming a star-shaped topology. Information is shared among the information-sharing terminal nodes through the establishment of a logical information-sharing ring. This is accomplished by adjusting the output of the wavelength-tunable transmitter at each terminal node to an appropriate wavelength according to the wavelength-routing characteristics of the AWG wavelength router. We developed a prototype information-sharing network system, in which, as preliminary experiments, HDTV and SDTV videos were used for real-time information sharing. The dynamic reconfiguration of information-sharing groups and a simple automatic restoration technique have been successfully demonstrated. The system is applicable to distributed computer processing systems and high-capacity information-sharing applications such as high-quality videoconferences.
Nobuhiko SHIMASAKI Akira OKADA Takehiko YAMAGUCHI
This paper reports a new operational mode, Group Transit Switching (GTS)" applicable to transit switching centers in a switched communication network. Group Transit Switching (GTS) proposed here is a kind of transit switching where a multiple number of trunk circuits is assigned to a route and reset in proper time as a group. In this approach, cascaded trunk circuit groups are kept connected for a period of time between specific two switching centers via so-called group transit switching center(s), where the number of trunk circuit groups being increased or decreased according to the change of traffic flow pattern on group basis. Thus, it is possible to save control load of the transit switching centers and to improve the adaptability of the communication network to traffic pattern variation. This paper also reports quantitative investigation on the traffic characteristics of GTS and the switching control load of group transit switching center, as well as some GTS application field. It is indicated that this GTS system can realize a saving of transit switching center switching control load and the flexible operation of the communication network without sacrificing the trunk efficiency of corresponding trunk circuit too much.
Rieko SATO Toshio ITO Katsuaki MAGARI Akira OKADA Manabu OGUMA Yasumasa SUZAKI Yoshihiro KAWAGUCHI Yasuhiro SUZUKI Akira HIMENO Noboru ISHIHARA
We fabricated a 1.55-µm polarization insensitive Michelson interferometric wavelength converter (MI-WC). The MI-WC consists of a two-channel spot-size converter integrated semiconductor optical amplifier (SS-SOA) on a planar lightwave circuit (PLC) platform. Clear eye opening and no power penalty in the back-to-back condition were obtained at 10 Gb/s modulation. We also confirmed the polarization insensitive operation on the input signal. Moreover, for an application of the MI-WC to DWDM networks, we demonstrated the selective wavelength conversion of 2.5 G/s optical packets from Fabry-Perot laser diode (FP-LD) light to four ITU-T grid wavelengths. We confirmed the good feasibility of this technique for use in DWDM networks. The wavelength conversion we describe here is indispensable for future all-optical networks, in which optical signal sources without wavelength control will be used at user-end terminals.
Rieko SATO Toshio ITO Katsuaki MAGARI Akira OKADA Manabu OGUMA Yasumasa SUZAKI Yoshihiro KAWAGUCHI Yasuhiro SUZUKI Akira HIMENO Noboru ISHIHARA
We fabricated a 1.55-µm polarization insensitive Michelson interferometric wavelength converter (MI-WC). The MI-WC consists of a two-channel spot-size converter integrated semiconductor optical amplifier (SS-SOA) on a planar lightwave circuit (PLC) platform. Clear eye opening and no power penalty in the back-to-back condition were obtained at 10 Gb/s modulation. We also confirmed the polarization insensitive operation on the input signal. Moreover, for an application of the MI-WC to DWDM networks, we demonstrated the selective wavelength conversion of 2.5 G/s optical packets from Fabry-Perot laser diode (FP-LD) light to four ITU-T grid wavelengths. We confirmed the good feasibility of this technique for use in DWDM networks. The wavelength conversion we describe here is indispensable for future all-optical networks, in which optical signal sources without wavelength control will be used at user-end terminals.