The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Hiromasa TANOBE(2hit)

1-2hit
  • High-Frequency and Integrated Design Based on Flip-Chip Interconnection Technique (Hi-FIT) for High-Speed (>100 Gbaud) Optical Devices Open Access

    Shigeru KANAZAWA  Hiroshi YAMAZAKI  Yuta UEDA  Wataru KOBAYASHI  Yoshihiro OGISO  Johsuke OZAKI  Takahiko SHINDO  Satoshi TSUNASHIMA  Hiromasa TANOBE  Atsushi ARARATAKE  

     
    INVITED PAPER

      Vol:
    E102-C No:4
      Page(s):
    340-346

    We developed a high-frequency and integrated design based on a flip-chip interconnection technique (Hi-FIT) as a wire-free interconnection technique that provides a high modulation bandwidth. The Hi-FIT can be applied to various high-speed (>100 Gbaud) optical devices. The Hi-FIT EA-DFB laser module has a 3-dB bandwidth of 59 GHz. And with a 4-intensity-level pulse amplitude modulation (PAM) operation at 107 Gbaud, we obtained a bit-error rate (BER) of less than 3.8×10-3, which is an error-free condition, by using a 7%-overhead (OH) hard-decision forward error correction (HD-FEC) code, even after a 10-km SMF transmission. The 3-dB bandwidth of the Hi-FIT employing an InP-MZM sub-assembly was more than 67 GHz, which was the limit of our measuring instrument. We also demonstrated a 120-Gbaud rate IQ modulation.

  • Reconfigurable Information-Sharing Network System Based on a Cyclic-Frequency AWG and Wavelength-Tunable Lasers

    Akira OKADA  Hiromasa TANOBE  Morito MATSUOKA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E88-B No:6
      Page(s):
    2449-2455

    We propose an information-sharing network system, capable of forming and dynamically reconfiguring multiple information-sharing groups on the same network platform by using wavelength routing and distributed shared memory technologies. The network system comprises information-sharing terminal nodes equipped with a shared memory and a wavelength-tunable transmitter, network management terminal and an arrayed-waveguide grating (AWG). The information-sharing terminal nodes are connected to an AWG by a pair of optical fibers, forming a star-shaped topology. Information is shared among the information-sharing terminal nodes through the establishment of a logical information-sharing ring. This is accomplished by adjusting the output of the wavelength-tunable transmitter at each terminal node to an appropriate wavelength according to the wavelength-routing characteristics of the AWG wavelength router. We developed a prototype information-sharing network system, in which, as preliminary experiments, HDTV and SDTV videos were used for real-time information sharing. The dynamic reconfiguration of information-sharing groups and a simple automatic restoration technique have been successfully demonstrated. The system is applicable to distributed computer processing systems and high-capacity information-sharing applications such as high-quality videoconferences.