1-7hit |
Shigefumi YAMASAKI Masaaki AKIYAMA Kenji NISHIDE Akira WADA Ryozo YAMAUCHI
Long-period fiber gratings (LPGs) using a high-silica core fiber are presented. A high-silica core fiber has a residual stress in the core, and the grating structure is formed by stress releasing of the core using a focused CO2 laser beam. The dependence of the transmission spectrum on temperature and tensile strength is measured, and low dependence compared with conventional LPGs is observed. These unique characteristics are caused by the difference of temperature and tensile strength changes of the effective indices for the fundamental propagation mode and the cladding mode in the high-silica core fiber.
Tomoharu KITABAYASHI Takuya AIZAWA Tetsuya SAKAI Akira WADA
In erbium doped optical fiber amplifiers (EDFAs) used in modern high-capacity wavelength division multiplexing (WDM) systems, the gain flatness of EDFA is very important in wide-band long-haul systems. In the EDFAs using the passive gain equalizers, the gain flatness deteriorates due to gain-tilt when the operating condition of the EDFA changes, while the EDFAs should maintain the gain flatness even if the operating condition has changed. To solve this problem, we have developed an active gain-slope compensation technique of an EDFA using a thulium-doped optical fiber (TDF) as a saturable absorber. The actively gain-slope compensated EDFA with the TDF compensator keeps the gain profile constant for the wide gain dynamic range more than 8 dB with the low noise figure less than 6 dB in the wavelength range of 1539-1564 nm.
Akira WADA Tetsuo NOZAWA Tak-On TSUN Ryozo YAMAUCHI
Single-mode fibers with intentionally induced periodical residual strains (IIPRS) along the fiber length are proposed for the suppression of the stimulated Brillouin scattering (SBS). A change of the residual strain along a fiber will change the Brillouin frequency shift, resulting in a broadening of the Brillouin gain profile. Such an increase of the line-width of the gain profile will cause a decrease of the gain coefficient which will raise the threshold power of the stimulated Brillouin scattering in optical fibers. Two types of the IIPRS fibers were fabricated. The residual strain of one IIPRS fiber is modified rectangularly while that of the other is changed triangularly. The measured spectra of the SBS are compared with that of a fiber with a constant strain. Using a novel mathematical model presented in this report, the possible improvements of the threshold powers for these two IIPRS fibers over the constant-strain fiber can be assessed through the SBS spectra. Finally, the achieved improvements are confirmed with the experimental results. The estimated improvement of the threshold for the IIPRS fiber with the rectangular profile is 2.9dB while the measured is 2.4dB. In case of the IIPRS fiber with a triangular profile, the improvement of the threshold is 5.4dB by estimation and is 5.1dB by experiment. While the limit of the threshold improvement for rectangular IIPRS fibers is 3dB, the threshold improvement for triangular IIPRS fibers is limited only by the allowable deviation of the tension applied during the drawing of fibers. It is estimated that a 5dB improvement is not difficult to realize.
Tomoharu KITABAYASHI Takuya AIZAWA Tetsuya SAKAI Akira WADA
In erbium doped optical fiber amplifiers (EDFAs) used in modern high-capacity wavelength division multiplexing (WDM) systems, the gain flatness of EDFA is very important in wide-band long-haul systems. In the EDFAs using the passive gain equalizers, the gain flatness deteriorates due to gain-tilt when the operating condition of the EDFA changes, while the EDFAs should maintain the gain flatness even if the operating condition has changed. To solve this problem, we have developed an active gain-slope compensation technique of an EDFA using a thulium-doped optical fiber (TDF) as a saturable absorber. The actively gain-slope compensated EDFA with the TDF compensator keeps the gain profile constant for the wide gain dynamic range more than 8 dB with the low noise figure less than 6 dB in the wavelength range of 1539-1564 nm.
Satoshi OKUDE Tetsuya SAKAI Masaaki SUDOH Akira WADA Ryozo YAMAUCHI
A novel technique is proposed to fabricate a chirped fiber Bragg grating utilizing thermal diffusion of core dopant. The chirped grating is written with a uniform period by using UV exposure technique in the fiber whose effective index of the guided mode varies along its length. Thermal diffusion of the core dopant it employed to realize this change of the effective index. Through the thermal diffusion process, the effective index of the fiber decreases from its initial value. When the grating is written in the diffused core region, its reflection wavelength becomes shorter than that in the non-diffused region. The continuous change of effective index is required for making a chirped grating. The fiber is heated by a non-uniform heat source. When the uniform grating is written in this region, the reflection wavelength smoothly changes along the fiber length although the grating period is constant. By optimizing the fiber parameters to realize a highly chirped grating, we have obtained a typical one whose bandwidth is 14.1 nm at half maximum and maximum rejection in transmission is 29 dB. Additionally, the proposed method has an advantage to control the chirp profile with high mechanical reliability.
Yuu ISHII Kensuke SHIMA Satoshi OKUDE Kenji NISHIDE Akira WADA
We investigate a method to suppress the polarization-dependent loss (PDL) of long-period fiber gratings (LPFGs). We study the origins of the PDL and propose an azimuthally isotropic UV exposure to suppress the UV-induced birefringence and to realize low-PDL LPFGs. By using this technique and a low birefringent fiber together, the PDL of LPFGs can be reduced to a sufficiently low level required in high performance communication systems. Moreover, the validity of our theoretical modeling is confirmed by the experimental results.
Tomoharu KITABAYASHI Tetsuya SAKAI Akira WADA
In modern high-capacity wavelength division multiplexing (WDM) transmission systems, there is increasing demand for large transmission capacity. To achieve this purpose, an L-band (1565-1625 nm) erbium-doped fiber amplifier (EDFA) is very effective method because the conventional silica-based EDF can be used. In EDFAs that used in WDM transmission systems, the gain flatness of EDFA is very important. A passive gain equalizer flattens the gain profile of EDFA. But the gain flatness in L-band deteriorates due to dynamic gain-tilt (DGT) and temperature gain-tilt (TGT) when the operating condition of the EDFA changes, while the EDFAs should maintain the gain flatness even if the operating condition has changed. To solve this problem, we propose an active gain-slope compensation technique for the L-band EDFA using a thulium-doped fiber (TDF). The EDFA actively gain-slope compensated by the TDF compensator keeps the gain profile constant for the wide input power range of more than 8 dB, a wide temperature range of 65 without gain-tilt in a wavelength band between 1575 nm and 1610 nm. Furthermore, the EDFA keeps a low noise figure of less than 7.5 dB.