The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Baoyun WANG(5hit)

1-5hit
  • Proactive Eavesdropping for Suspicious Millimeter Wave Wireless Communications with Spoofing Relay

    Cheng CHEN  Haibo DAI  Tianwen GUO  Qiang YU  Baoyun WANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:4
      Page(s):
    691-696

    This paper investigates the wireless information surveillance in a suspicious millimeter wave (mmWave) wireless communication system via the spoofing relay based proactive eavesdropping approach. Specifically, the legitimate monitor in the system acts as a relay to simultaneously eavesdrop and send spoofing signals to vary the source transmission rate. To maximize the effective eavesdropping rate, an optimization problem for both hybrid precoding design and power distribution is formulated. Since the problem is fractional and non-convex, we resort to the Dinkelbach method to equivalently reduce the original problem into a series of non-fractional problems, which is still coupling. Afterwards, based on the BCD-type method, the non-fractional problem is reduced to three subproblems with two introduced parameters. Then the GS-PDD-based algorithm is proposed to obtain the optimal solution by alternately optimizing the three subproblems and simultaneously updating the introduced parameters. Numerical results verify the effectiveness and superiority of our proposed scheme.

  • An Algorithm for Fast Implementation of AN-Aided Transmit Design in Secure MIMO System with SWIPT

    Xueqi ZHANG  Wei WU  Baoyun WANG  Jian LIU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E99-A No:12
      Page(s):
    2591-2596

    This letter investigates transmit optimization in multi-user multi-input multi-output (MIMO) wiretap channels. In particular, we address the transmit covariance optimization for an artificial-noise (AN)-aided secrecy rate maximization (SRM) when subject to individual harvested energy and average transmit power. Owing to the inefficiency of the conventional interior-point solvers in handling our formulated SRM problem, a custom-designed algorithm based on penalty function (PF) and projected gradient (PG) is proposed, which results in semi-closed form solutions. The proposed algorithm achieves about two orders of magnitude reduction of running time with nearly the same performance comparing to the existing interior-point solvers. In addition, the proposed algorithm can be extended to other power-limited transmit design problems. Simulation results demonstrate the excellent performance and high efficiency of the algorithm.

  • Stochastic Channel Selection for UAV-Aided Data Collection

    Tianyu LU  Haibo DAI  Juan ZHAO  Baoyun WANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:3
      Page(s):
    598-603

    We investigate the uplink channel selection problem of unmanned aerial vehicle (UAV)-aided data collection system in delay-sensitive sensor networks. In the studied model, the fixed-wing UAV is dispatched to gather sensing information from terrestrial sensor nodes (SNs) and they contend for uplink channels for transmission. With the goal of minimizing the system-wide delay, we formulate a resource allocation problem. Encountered with the challenge that the flight trajectory of UAV is unknown to SNs and the wireless channel is time-varying, we solve the problem by stochastic game approach and further propose a fully distributed channel selection algorithm which is proved to converge to a pure strategy Nash Equilibrium (NE). Simulation results are presented to show that our proposed algorithm has good performance.

  • Antenna Allocation of Full Duplex Receiver for Security Improvement of the MIMOME Wiretap Channel with Self-Interference Cancellation

    Tianwen GUO  Ping DENG  Qiang YU  Baoyun WANG  

     
    LETTER-Digital Signal Processing

      Vol:
    E102-A No:11
      Page(s):
    1560-1565

    In this letter, we investigate a design of efficient antenna allocation at the full duplex receiver (FDR) in a multi-input multi-output multi-eavesdropper (MIMOME) wiretap channel for physical layer security improvement. Specifically, we propose the allocation which are feasible for the practical scenario with self-interference (SI) taken into account, because the jamming signals from FDR not only confuse the eavesdropper but also inevitably cause SI at the FDR. Due to the nolinear and coupling of the antenna allocation optimization problem, we transform the original problem into an integer programming problem. Then, we derive the optimal solution and the corresponding beamforming matrices in closed-form by means of combining spatial alignment and null-space projection method. Furthermore, we present the feasibility condition and full-protection condition, which offer insight into principles that enable more efficient and effective use of FDR in the wiretap channel for security improvement. From the simulation results, we validate the theoretical analysis and demonstrate the outstanding performance of the proposed antennas allocation at FDR.

  • Sampling Set Selection for Bandlimited Signals over Perturbed Graph

    Pei LI  Haiyang ZHANG  Fan CHU  Wei WU  Juan ZHAO  Baoyun WANG  

     
    LETTER-Graphs and Networks

      Vol:
    E103-A No:6
      Page(s):
    845-849

    This paper proposes a sampling strategy for bandlimited graph signals over perturbed graph, in which we assume the edge between any pair of the nodes may be deleted randomly. Considering the mismatch between the true graph and the presumed graph, we derive the mean square error (MSE) of the reconstructed bandlimited graph signals. To minimize the MSE, we propose a greedy-based algorithm to obtain the optimal sampling set. Furthermore, we use Neumann series to avoid the pseudo-inverse computing. An efficient algorithm with low-complexity is thus proposed. Finally, numerical results show the superiority of our proposed algorithms over the other existing algorithms.