The search functionality is under construction.

Author Search Result

[Author] BenYong LIU(4hit)

1-4hit
  • Feature Fusion for Blurring Detection in Image Forensics

    BenJuan YANG  BenYong LIU  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E97-D No:6
      Page(s):
    1690-1693

    Artificial blurring is a typical operation in image forging. Most existing image forgery detection methods consider only one single feature of artificial blurring operation. In this manuscript, we propose to adopt feature fusion, with multifeatures for artificial blurring operation in image tampering, to improve the accuracy of forgery detection. First, three feature vectors that address the singular values of the gray image matrix, correlation coefficients for double blurring operation, and image quality metrics (IQM) are extracted and fused using principal component analysis (PCA), and then a support vector machine (SVM) classifier is trained using the fused feature extracted from training images or image patches containing artificial blurring operations. Finally, the same procedures of feature extraction and feature fusion are carried out on the suspected image or suspected image patch which is then classified, using the trained SVM, into forged or non-forged classes. Experimental results show the feasibility of the proposed method for image tampering feature fusion and forgery detection.

  • Tensorial Kernel Based on Spatial Structure Information for Neuroimaging Classification

    YingJiang WU  BenYong LIU  

     
    LETTER-Pattern Recognition

      Pubricized:
    2017/02/23
      Vol:
    E100-D No:6
      Page(s):
    1380-1383

    Recently, a high dimensional classification framework has been proposed to introduce spatial structure information in classical single kernel support vector machine optimization scheme for brain image analysis. However, during the construction of spatial kernel in this framework, a huge adjacency matrix is adopted to determine the adjacency relation between each pair of voxels and thus it leads to very high computational complexity in the spatial kernel calculation. The method is improved in this manuscript by a new construction of tensorial kernel wherein a 3-order tensor is adopted to preserve the adjacency relation so that calculation of the above huge matrix is avoided, and hence the computational complexity is significantly reduced. The improvement is verified by experimental results on classification of Alzheimer patients and cognitively normal controls.

  • Blind Image Deblurring Using Weighted Sum of Gaussian Kernels for Point Spread Function Estimation

    Hong LIU  BenYong LIU  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2015/08/05
      Vol:
    E98-D No:11
      Page(s):
    2026-2029

    Point spread function (PSF) estimation plays a paramount role in image deblurring processing, and traditionally it is solved by parameter estimation of a certain preassumed PSF shape model. In real life, the PSF shape is generally arbitrary and complicated, and thus it is assumed in this manuscript that a PSF may be decomposed as a weighted sum of a certain number of Gaussian kernels, with weight coefficients estimated in an alternating manner, and an l1 norm-based total variation (TVl1) algorithm is adopted to recover the latent image. Experiments show that the proposed method can achieve satisfactory performance on synthetic and realistic blurred images.

  • Spatial and Anatomical Regularization Based on Multiple Kernel Learning for Neuroimaging Classification

    YingJiang WU  BenYong LIU  

     
    LETTER-Biological Engineering

      Pubricized:
    2016/01/13
      Vol:
    E99-D No:4
      Page(s):
    1272-1274

    Recently, a high dimensional classification framework has been proposed to introduce spatial and anatomical priors in classical single kernel support vector machine optimization scheme, wherein the sequential minimal optimization (SMO) training algorithm is adopted, for brain image analysis. However, to satisfy the optimization conditions required in the single kernel case, it is unreasonably assumed that the spatial regularization parameter is equal to the anatomical one. In this letter, this approach is improved by combining SMO algorithm with multiple kernel learning to avoid that assumption and optimally estimate two parameters. The improvement is comparably demonstrated by experimental results on classification of Alzheimer patients and elderly controls.