The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Bin LYU(7hit)

1-7hit
  • Backscatter Assisted Wireless Powered Communication Networks with Non-Orthogonal Multiple Access

    Bin LYU  Zhen YANG  Guan GUI  

     
    LETTER-Digital Signal Processing

      Vol:
    E100-A No:8
      Page(s):
    1724-1728

    This letter considers a backscatter assisted wireless powered communication network (BAWPCN) with non-orthogonal multiple access (NOMA). This model consists of a hybrid access point (HAP) and multiple users which can work in either backscatter or harvest-then-transmit (HTT) protocol. To fully exploit time for information transmission, the users working in the backscatter protocol are scheduled to reflect modulated signals during the first phase of the HTT protocol which is dedicated for energy transfer. During the second phase, all users working in the HTT protocol transmit information to the HAP simultaneously since NOMA is adopted. Considering both short-term and long-term optimization problems to maximize the system throughput, the optimal resource allocation policies are obtained. Simulation results show that the proposed model can significantly improve the system performance.

  • User Clustering for Wireless Powered Communication Networks with Non-Orthogonal Multiple Access

    Tianyi XIE  Bin LYU  Zhen YANG  Feng TIAN  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E101-A No:7
      Page(s):
    1146-1150

    In this letter, we study a wireless powered communication network (WPCN) with non-orthogonal multiple access (NOMA), where the user clustering scheme that groups each two users in a cluster is adopted to guarantee the system performance. The two users in a cluster transmit data simultaneously via NOMA, while time division multiple access (TDMA) is used among clusters. We aim to maximize the system throughput by finding the optimal cluster permutation and the optimal time allocation, which can be obtained by solving the optimization problems corresponding to all cluster permutations. The closed-form solution of each optimization problem is obtained by exploiting its constraint structures. However, the complexity of this exhaustive method is quite high, we further propose a sub-optimal clustering scheme with low complexity. The simulation results demonstrate the superiority of the proposed scheme.

  • Throughput Maximization in Backscatter Assisted Wireless Powered Communication Networks

    Bin LYU  Zhen YANG  Guan GUI  Youhong FENG  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E100-A No:6
      Page(s):
    1353-1357

    This letter introduces a new model for backscatter assisted wireless powered communication networks (BAWPCNs) that include a hybrid access point (HAP) and multiple backscatter communication (BackCom) and traditional wireless powered communication network (WPCN) users. To make full use of time to transmit information, both backscatter and harvest-then-transmit (HTT) modes are employed. In the proposed model, during the first time slot dedicated for energy transfer in traditional WPCNs, the traditional WPCN users harvest energy radiated by the HAP, and simultaneously the BackCom users reflect modulated signals to the HAP. The traditional WPCN users are scheduled during the remaining time slots via time division multiple access (TMDA). The optimal time allocation policies for the half-duplex (HD) and full-duplex (FD) BAWPCNs are obtained to maximize the system throughput. The tradeoff between backscatter and HTT modes is analyzed. Simulation results demonstrate the superiority of the proposed model.

  • Exploiting RIS-Aided Cooperative Non-Orthogonal Multiple Access with Full-Duplex Relaying

    Guoqing DONG  Zhen YANG  Youhong FENG  Bin LYU  

     
    LETTER-Mobile Information Network and Personal Communications

      Pubricized:
    2023/01/06
      Vol:
    E106-A No:7
      Page(s):
    1011-1015

    In this paper, a novel reconfigurable intelligent surface (RIS)-aided full-duplex (FD) cooperative non-orthogonal multiple access (CNOMA) network is investigated over Nakagami-m fading channels, where two RISs are employed to help the communication of paired users. To evaluate the potential benefits of our proposed scheme, we first derive the closed-form expressions of the outage probability. Then, we derive users' diversity orders according to the asymptotic approximation at high signal-to-noise-ratio (SNR). Simulation results validate our analysis and reveal that users' diversity orders are affected by their channel fading parameters, the self-interference of FD, and the number of RIS elements.

  • Stackelberg Game for Wireless-Powered Relays Assisted Batteryless IoT Networks

    Yanming CHEN  Bin LYU  Zhen YANG  Fei LI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/08/10
      Vol:
    E106-B No:12
      Page(s):
    1479-1490

    In this paper, we investigate a wireless-powered relays assisted batteryless IoT network based on the non-linear energy harvesting model, where there exists an energy service provider constituted by the hybrid access point (HAP) and an IoT service provider constituted by multiple clusters. The HAP provides energy signals to the batteryless devices for information backscattering and the wireless-powered relays for energy harvesting. The relays are deployed to assist the batteryless devices with the information transmission to the HAP by using the harvested energy. To model the energy interactions between the energy service provider and IoT service provider, we propose a Stackelberg game based framework. We aim to maximize the respective utility values of the two providers. Since the utility maximization problem of the IoT service provider is non-convex, we employ the fractional programming theory and propose a block coordinate descent (BCD) based algorithm with successive convex approximation (SCA) and semi-definite relaxation (SDR) techniques to solve it. Numerical simulation results confirm that compared to the benchmark schemes, our proposed scheme can achieve larger utility values for both the energy service provider and IoT service provider.

  • Non-Orthogonal Multiple Access in Wireless Powered Communication Networks with SIC Constraints

    Bin LYU  Zhen YANG  Guan GUI  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/09/29
      Vol:
    E101-B No:4
      Page(s):
    1094-1101

    This paper studies a wireless powered communication network (WPCN) with non-orthogonal multiple access (NOMA) under successive interference cancellation (SIC) constraints, where the users first harvest energy from the power station and then transmit data to the information receiver simultaneously. Under this setup, we investigate the system throughput maximization problem. We first formulate an optimization problem for a general case, which is non-convex. To derive the optimal solution, new variables are introduced to transform the initial problem into a convex optimization problem. For a special case, i.e., two-user case, the optimal solution is derived as a closed-form expression. Simulations on the effect of SIC constraints show the importance of the distinctness among users' channels for the proposed model.

  • Wireless-Powered Relays Assisted Batteryless IoT Networks Empowered by Energy Beamforming

    Yanming CHEN  Bin LYU  Zhen YANG  Fei LI  

     
    LETTER-Mobile Information Network and Personal Communications

      Pubricized:
    2022/08/23
      Vol:
    E106-A No:2
      Page(s):
    164-168

    In this letter, we propose an energy beamforming empowered relaying scheme for a batteryless IoT network, where wireless-powered relays are deployed between the hybrid access point (HAP) and batteryless IoT devices to assist the uplink information transmission from the devices to the HAP. In particular, the HAP first exploits energy beamforming to efficiently transmit radio frequency (RF) signals to transfer energy to the relays and as the incident signals to enable the information backscattering of batteryless IoT devices. Then, each relay uses the harvested energy to forward the decoded signals from its corresponding batteryless IoT device to the HAP, where the maximum-ratio combing is used for further performance improvement. To maximize the network sum-rate, the joint optimization of energy beamforming vectors at the HAP, network time scheduling, power allocation at the relays, and relection coefficient at the users is investigated. As the formulated problem is non-convex, we propose an alternating optimization algorithm with the variable substitution and semi-definite relaxation (SDR) techniques to solve it efficiently. Specifically, we prove that the obtained energy beamforming matrices are always rank-one. Numerical results show that compared to the benchmark schemes, the proposed scheme can achieve a significant sum-rate gain.