The search functionality is under construction.

Author Search Result

[Author] Feng TIAN(5hit)

1-5hit
  • An Approach of Filtering Wrong-Type Entities for Entity Ranking

    Junsan ZHANG  Youli QU  Shu GONG  Shengfeng TIAN  Haoliang SUN  

     
    LETTER-Natural Language Processing

      Vol:
    E96-D No:1
      Page(s):
    163-167

    Entity is an important information carrier in Web pages. Users would like to directly get a list of relevant entities instead of a list of documents when they submit a query to the search engine. So the research of related entity finding (REF) is a meaningful work. In this paper we investigate the most important task of REF: Entity Ranking. The wrong-type entities which don't belong to the target-entity type will pollute the ranking result. We propose a novel method to filter wrong-type entities. We focus on the acquisition of seed entities and automatically extracting the common Wikipedia categories of target-entity type. Also we demonstrate how to filter wrong-type entities using the proposed model. The experimental results show our method can filter wrong-type entities effectively and improve the results of entity ranking.

  • Subchannel and Power Allocation with Fairness Guaranteed for the Downlink of NOMA-Based Networks

    Qingyuan LIU  Qi ZHANG  Xiangjun XIN  Ran GAO  Qinghua TIAN  Feng TIAN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/06/08
      Vol:
    E103-B No:12
      Page(s):
    1447-1461

    This paper investigates the resource allocation problem for the downlink of non-orthogonal multiple access (NOMA) networks. A novel resource allocation method is proposed to deal with the problem of maximizing the system capacity while taking into account user fairness. Since the optimization problem is nonconvex and intractable, we adopt the idea of step-by-step optimization, decomposing it into user pairing, subchannel and power allocation subproblems. First, all users are paired according to their different channel gains. Then, the subchannel allocation is executed by the proposed subchannel selection algorithm (SSA) based on channel priority. Once the subchannel allocation is fixed, to further improve the system capacity, the subchannel power allocation is implemented by the successive convex approximation (SCA) approach where the nonconvex optimization problem is transformed into the approximated convex optimization problem in each iteration. To ensure user fairness, the upper and lower bounds of the power allocation coefficients are derived and combined by introducing the tuning coefficients. The power allocation coefficients are dynamically adjustable by adjusting the tuning coefficients, thus the diversified quality of service (QoS) requirements can be satisfied. Finally, simulation results demonstrate the superiority of the proposed method over the existing methods in terms of system performance, furthermore, a good tradeoff between the system capacity and user fairness can be achieved.

  • User Clustering for Wireless Powered Communication Networks with Non-Orthogonal Multiple Access

    Tianyi XIE  Bin LYU  Zhen YANG  Feng TIAN  

     
    LETTER-Mobile Information Network and Personal Communications

      Vol:
    E101-A No:7
      Page(s):
    1146-1150

    In this letter, we study a wireless powered communication network (WPCN) with non-orthogonal multiple access (NOMA), where the user clustering scheme that groups each two users in a cluster is adopted to guarantee the system performance. The two users in a cluster transmit data simultaneously via NOMA, while time division multiple access (TDMA) is used among clusters. We aim to maximize the system throughput by finding the optimal cluster permutation and the optimal time allocation, which can be obtained by solving the optimization problems corresponding to all cluster permutations. The closed-form solution of each optimization problem is obtained by exploiting its constraint structures. However, the complexity of this exhaustive method is quite high, we further propose a sub-optimal clustering scheme with low complexity. The simulation results demonstrate the superiority of the proposed scheme.

  • Motion Parameter Estimation Based on Overlapping Elements for TDM-MIMO FMCW Radar

    Feng TIAN  Wan LIU  Weibo FU  Xiaojun HUANG  

     
    PAPER-Sensing

      Pubricized:
    2023/02/06
      Vol:
    E106-B No:8
      Page(s):
    705-713

    Intelligent traffic monitoring provides information support for autonomous driving, which is widely used in intelligent transportation systems (ITSs). A method for estimating vehicle moving target parameters based on millimeter-wave radars is proposed to solve the problem of low detection accuracy due to velocity ambiguity and Doppler-angle coupling in the process of traffic monitoring. First of all, a MIMO antenna array with overlapping elements is constructed by introducing them into the typical design of MIMO radar array antennas. The motion-induced phase errors are eliminated by the phase difference among the overlapping elements. Then, the position errors among them are corrected through an iterative method, and the angle of multiple targets is estimated. Finally, velocity disambiguation is performed by adopting the error-corrected phase difference among the overlapping elements. An accurate estimation of vehicle moving target angle and velocity is achieved. Through Monte Carlo simulation experiments, the angle error is 0.1° and the velocity error is 0.1m/s. The simulation results show that the method can be used to effectively solve the problems related to velocity ambiguity and Doppler-angle coupling, meanwhile the accuracy of velocity and angle estimation can be improved. An improved algorithm is tested on the vehicle datasets that are gathered in the forward direction of ordinary public scenes of a city. The experimental results further verify the feasibility of the method, which meets the real-time and accuracy requirements of ITSs on vehicle information monitoring.

  • Multi-Segment Verification FrFT Frame Synchronization Detection in Underwater Acoustic Communications

    Guojin LIAO  Yongpeng ZUO  Qiao LIAO  Xiaofeng TIAN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/09/01
      Vol:
    E106-B No:12
      Page(s):
    1501-1509

    Frame synchronization detection before data transmission is an important module which directly affects the lifetime and coexistence of underwater acoustic communication (UAC) networks, where linear frequency modulation (LFM) is a frame preamble signal commonly used for synchronization. Unlike terrestrial wireless communications, strong bursty noise frequently appears in UAC. Due to the long transmission distance and the low signal-to-noise ratio, strong short-distance bursty noise will greatly reduce the accuracy of conventional fractional fourier transform (FrFT) detection. We propose a multi-segment verification fractional fourier transform (MFrFT) preamble detection algorithm to address this challenge. In the proposed algorithm, 4 times of adjacent FrFT operations are carried out. And the LFM signal identifies by observing the linear correlation between two lines connected in pair among three adjacent peak points, called ‘dual-line-correlation mechanism’. The accurate starting time of the LFM signal can be found according to the peak frequency of the adjacent FrFT. More importantly, MFrFT do not result in an increase in computational complexity. Compared with the conventional FrFT detection method, experimental results show that the proposed algorithm can effectively distinguish between signal starting points and bursty noise with much lower error detection rate, which in turn minimizes the cost of retransmission.