The search functionality is under construction.

Author Search Result

[Author] Xiangjun XIN(2hit)

1-2hit
  • Subchannel and Power Allocation with Fairness Guaranteed for the Downlink of NOMA-Based Networks

    Qingyuan LIU  Qi ZHANG  Xiangjun XIN  Ran GAO  Qinghua TIAN  Feng TIAN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/06/08
      Vol:
    E103-B No:12
      Page(s):
    1447-1461

    This paper investigates the resource allocation problem for the downlink of non-orthogonal multiple access (NOMA) networks. A novel resource allocation method is proposed to deal with the problem of maximizing the system capacity while taking into account user fairness. Since the optimization problem is nonconvex and intractable, we adopt the idea of step-by-step optimization, decomposing it into user pairing, subchannel and power allocation subproblems. First, all users are paired according to their different channel gains. Then, the subchannel allocation is executed by the proposed subchannel selection algorithm (SSA) based on channel priority. Once the subchannel allocation is fixed, to further improve the system capacity, the subchannel power allocation is implemented by the successive convex approximation (SCA) approach where the nonconvex optimization problem is transformed into the approximated convex optimization problem in each iteration. To ensure user fairness, the upper and lower bounds of the power allocation coefficients are derived and combined by introducing the tuning coefficients. The power allocation coefficients are dynamically adjustable by adjusting the tuning coefficients, thus the diversified quality of service (QoS) requirements can be satisfied. Finally, simulation results demonstrate the superiority of the proposed method over the existing methods in terms of system performance, furthermore, a good tradeoff between the system capacity and user fairness can be achieved.

  • Bee Colony Algorithm Optimization Based on Link Cost for Routing and Wavelength Assignment in Satellite Optical Networks Open Access

    Yeqi LIU  Qi ZHANG  Xiangjun XIN  Qinghua TIAN  Ying TAO  Naijin LIU  Kai LV  

     
    PAPER-Internet

      Pubricized:
    2019/12/18
      Vol:
    E103-B No:6
      Page(s):
    690-702

    Rapid development of modern communications has initiated essential requirements for providing efficient algorithms that can solve the routing and wavelength assignment (RWA) problem in satellite optical networks. In this paper, the bee colony algorithm optimization based on link cost for RWA (BCO-LCRWA) is tailored for satellite networks composed of intersatellite laser links. In BCO-LCRWA, a cost model of intersatellite laser links is established based on metrics of network transmission performance namely delay and wavelengths utilization, with constraints of Doppler wavelength drift, transmission delay, wavelength consistency and continuity. Specifically, the fitness function of bee colony exploited in the proposed algorithm takes wavelength resources utilization and communication hops into account to implement effective utilization of wavelengths, to avoid unnecessary over-detouring and ensure bit error rate (BER) performance of the system. The simulation results corroborate the improved performance of the proposed algorithm compared with the existing alternatives.