The search functionality is under construction.

Author Search Result

[Author] Chen WANG(10hit)

1-10hit
  • A Throughput-Aimed MAC Protocol with QoS Provision for Cognitive Ad Hoc Networks Open Access

    Yichen WANG  Pinyi REN  Guangen WU  

     
    LETTER

      Vol:
    E93-B No:6
      Page(s):
    1426-1429

    In this letter, we propose a Throughput-aimed MAC Protocol with Quality of Service (QoS) provision (T-MAC) for cognitive Ad Hoc networks. This protocol operates based on the Time Division Multiple Access (TDMA) slot assignments and the power control mechanism, which can improve the QoS provision and network throughput. Our simulation results show that the T-MAC protocol can efficiently increase the network throughput and reduce the access delay.

  • An Edge-Preserving Image Coding System with Vector Quantization

    Chou-Chen WANG  Chin-Hsing CHEN  Chaur-Heh HSIEH  

     
    PAPER-Image Processing,Computer Graphics and Pattern Recognition

      Vol:
    E82-D No:12
      Page(s):
    1572-1581

    Image coding with vector quantization (VQ) reveals several defects which include edge degradation and high encoding complexity. This paper presents an edge-preserving coding system based on VQ to overcome these defects. A signal processing unit first classifies image blocks into low-activity or high-activity class. A high-activity block is then decomposed into a smoothing factor, a bit-plane and a smoother (lower variance) block. These outputs can be more efficiently encoded by VQ with lower distortion. A set of visual patterns is used to encode the bit-planes by binary vector quantization. We also develop a modified search-order coding to further reduce the redundancy of quantization indexes. Simulation results show that the proposed algorithm achieves much better perceptual quality with higher compression ratio and significant lower computational complexity, as compared to the direct VQ.

  • Classified Vector Quantization for Image Compression Using Direction Classification

    Chou-Chen WANG  Chin-Hsing CHEN  

     
    PAPER-Image Theory

      Vol:
    E82-A No:3
      Page(s):
    535-542

    In this paper, a classified vector quantization (CVQ) method using a novel direction based classifier is proposed. The new classifier uses a distortion measure related to the angle between vectors to determine the similarity of vectors. The distortion measure is simple and adequate to classify various edge types other than single and straight line types, which limit the size of image block to a rather small size. Simulation results show that the proposed technique can achieve better perceptual quality and edge integrity at a larger block size, as compared to other CVQs. It is shown when the vector dimension is changed from 16(4 4) to 64(8 8), the average bit rate can be reduced from 0. 684 bpp to 0.191, whereas the PSNR degradation is only about 1.2 dB.

  • Polarization-Based Long-Range Communication Directional MAC Protocol for Cognitive Ad Hoc Networks

    Yichen WANG  Pinyi REN  Zhou SU  

     
    PAPER-Radio System

      Vol:
    E94-B No:5
      Page(s):
    1265-1275

    Utilizing available channels to improve the network performance is one of the most important targets for the cognitive MAC protocol design. Using antenna technologies is an efficient way to reach this target. Therefore, in this paper, we propose a novel cognitive MAC protocol, called Polarization-based Long-range Communication Directional MAC Protocol (PLRC-DMAC), for Cognitive Ad Hoc Networks (CAHNs). The proposed protocol uses directional antennas to acquire better spatial reuse and establish long-range communication links, which can support more nodes to access the same channel simultaneously. Moreover, the PLRC-DMAC also uses polarization diversity to allow nodes in the CAHN to share the same channel with Primary Users (PUs). Furthermore, we also propose a Long-range Orientation (LRO) algorithm to orient the long-range nodes. Simulation results show that the LRO algorithm can accurately orient the long-range nodes, and the PLRC-DMAC can significantly increase the network throughput as well as reduce the end-to-end delay.

  • Direct Coherency Identification of Synchronous Generators in Taiwan Power System Based on Fuzzy c-Means Clustering

    Shu-Chen WANG  Pei-Hwa HUANG  Chi-Jui WU  Yung-Sung CHUANG  

     
    PAPER-Soft Computing

      Vol:
    E90-A No:10
      Page(s):
    2223-2231

    This paper is to investigate the application of fuzzy c-means clustering to the direct identification of coherent synchronous generators in power systems. Because of the conceptual appropriateness and computational simplicity, this approach is essentially a fast and flexible method. At first, the coherency measures are derived from the time-domain responses of generators in order to reveal the relations between any pair of generators. And then they are used as initial element values of the membership matrix in the clustering procedures. An application of the proposed method to the Taiwan power (Taipower) system is demonstrated in an attempt to show the effectiveness of this clustering approach. The effects of short circuit fault locations, operating conditions, data sampling interval, and power system stabilizers are also investigated, as well. The results are compared with those obtained from the similarity relation method. And thus it is found that the presented approach needs less computation time and can directly initialize a clustering process for any number of clusters.

  • Image Retrieval Based on Structured Local Binary Kirsch Pattern

    Guang-Yu KANG  Shi-Ze GUO  De-Chen WANG  Long-Hua MA  Zhe-Ming LU  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E96-D No:5
      Page(s):
    1230-1232

    This Letter presents a new feature named structured local binary Kirsch pattern (SLBKP) for image retrieval. Each input color image is decomposed into Y, Cb and Cr components. For each component image, eight 33 Kirsch direction templates are first performed pixel by pixel, and thus each pixel is characterized by an 8-dimenional edge-strength vector. Then a binary operation is performed on each edge-strength vector to obtain its integer-valued SLBKP. Finally, three SLBKP histograms are concatenated together as the final feature of each input colour image. Experimental results show that, compared with the existing structured local binary Haar pattern (SLBHP)-based feature, the proposed feature can greatly improve retrieval performance.

  • An Integrated Hole-Filling Algorithm for View Synthesis

    Wenxin YU  Weichen WANG  Minghui WANG  Satoshi GOTO  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1306-1314

    Multi-view video can provide users with three-dimensional (3-D) and virtual reality perception through multiple viewing angles. In recent years, depth image-based rendering (DIBR) has been generally used to synthesize virtual view images in free viewpoint television (FTV) and 3-D video. To conceal the zero-region more accurately and improve the quality of a virtual view synthesized frame, an integrated hole-filling algorithm for view synthesis is proposed in this paper. The proposed algorithm contains five parts: an algorithm for distinguishing different regions, foreground and background boundary detection, texture image isophotes detection, a textural and structural isophote prediction algorithm, and an in-painting algorithm with gradient priority order. Based on the texture isophote prediction with a geometrical principle and the in-painting algorithm with a gradient priority order, the boundary information of the foreground is considerably clearer and the texture information in the zero-region can be concealed much more accurately than in previous works. The vision quality mainly depends on the distortion of the structural information. Experimental results indicate that the proposed algorithm improves not only the objective quality of the virtual image, but also its subjective quality considerably; human vision is also clearly improved based on the subjective results. In particular, the algorithm ensures the boundary contours of the foreground objects and the textural and structural information.

  • A POMDP Based Distributed Adaptive Opportunistic Spectrum Access Strategy for Cognitive Ad Hoc Networks

    Yichen WANG  Pinyi REN  Zhou SU  

     
    LETTER

      Vol:
    E94-B No:6
      Page(s):
    1621-1624

    In this letter, we propose a Partially Observable Markov Decision Process (POMDP) based Distributed Adaptive Opportunistic Spectrum Access (DA-OSA) Strategy for Cognitive Ad Hoc Networks (CAHNs). In each slot, the source and destination choose a set of channels to sense and then decide the transmission channels based on the sensing results. In order to maximize the throughput for each link, we use the theories of sequential decision and optimal stopping to determine the optimal sensing channel set. Moreover, we also establish the myopic policy and exploit the monotonicity of the reward function that we use, which can be used to reduce the complexity of the sequential decision.

  • High-Precision Mobile Robot Localization Using the Integration of RAR and AKF

    Chen WANG  Hong TAN  

     
    PAPER-Information Network

      Pubricized:
    2023/01/24
      Vol:
    E106-D No:5
      Page(s):
    1001-1009

    The high-precision indoor positioning technology has gradually become one of the research hotspots in indoor mobile robots. Relax and Recover (RAR) is an indoor positioning algorithm using distance observations. The algorithm restores the robot's trajectory through curve fitting and does not require time synchronization of observations. The positioning can be successful with few observations. However, the algorithm has the disadvantages of poor resistance to gross errors and cannot be used for real-time positioning. In this paper, while retaining the advantages of the original algorithm, the RAR algorithm is improved with the adaptive Kalman filter (AKF) based on the innovation sequence to improve the anti-gross error performance of the original algorithm. The improved algorithm can be used for real-time navigation and positioning. The experimental validation found that the improved algorithm has a significant improvement in accuracy when compared to the original RAR. When comparing to the extended Kalman filter (EKF), the accuracy is also increased by 12.5%, which can be used for high-precision positioning of indoor mobile robots.

  • FOM-CDS PUF: A Novel Configurable Dual State Strong PUF Based on Feedback Obfuscation Mechanism against Modeling Attacks

    Hong LI  Wenjun CAO  Chen WANG  Xinrui ZHU  Guisheng LIAO  Zhangqing HE  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2023/03/29
      Vol:
    E106-A No:10
      Page(s):
    1311-1321

    The configurable Ring oscillator Physical unclonable function (CRO PUF) is the newly proposed strong PUF based on classic RO PUF, which can generate exponential Challenge-Response Pairs (CRPs) and has good uniqueness and reliability. However, existing proposals have low hardware utilization and vulnerability to modeling attacks. In this paper, we propose a Novel Configurable Dual State (CDS) PUF with lower overhead and higher resistance to modeling attacks. This structure can be flexibly transformed into RO PUF and TERO PUF in the same topology according to the parity of the Hamming Weight (HW) of the challenge, which can achieve 100% utilization of the inverters and improve the efficiency of hardware utilization. A feedback obfuscation mechanism (FOM) is also proposed, which uses the stable count value of the ring oscillator in the PUF as the updated mask to confuse and hide the original challenge, significantly improving the effect of resisting modeling attacks. The proposed FOM-CDS PUF is analyzed by building a mathematical model and finally implemented on Xilinx Artix-7 FPGA, the test results show that the FOM-CDS PUF can effectively resist several popular modeling attack methods and the prediction accuracy is below 60%. Meanwhile it shows that the FOM-CDS PUF has good performance with uniformity, Bit Error Rate at different temperatures, Bit Error Rate at different voltages and uniqueness of 53.68%, 7.91%, 5.64% and 50.33% respectively.