The search functionality is under construction.

Author Search Result

[Author] Minghui WANG(5hit)

1-5hit
  • Framework of a Contour Based Depth Map Coding Method

    Minghui WANG  Xun HE  Xin JIN  Satoshi GOTO  

     
    PAPER-Coding & Processing

      Vol:
    E95-A No:8
      Page(s):
    1270-1279

    Stereo-view and multi-view video formats are heavily investigated topics given their vast application potential. Depth Image Based Rendering (DIBR) system has been developed to improve Multiview Video Coding (MVC). Depth image is introduced to synthesize virtual views on the decoder side in this system. Depth image is a piecewise image, which is filled with sharp contours and smooth interior. Contours in a depth image show more importance than interior in view synthesis process. In order to improve the quality of the synthesized views and reduce the bitrate of depth image, a contour based coding strategy is proposed. First, depth image is divided into layers by different depth value intervals. Then regions, which are defined as the basic coding unit in this work, are segmented from each layer. The region is further divided into the contour and the interior. Two different procedures are employed to code contours and interiors respectively. A vector-based strategy is applied to code the contour lines. Straight lines in contours cost few of bits since they are regarded as vectors. Pixels, which are out of straight lines, are coded one by one. Depth values in the interior of a region are modeled by a linear or nonlinear formula. Coefficients in the formula are retrieved by regression. This process is called interior painting. Unlike conventional block based coding method, the residue between original frame and reconstructed frame (by contour rebuilt and interior painting) is not sent to decoder. In this proposal, contour is coded in a lossless way whereas interior is coded in a lossy way. Experimental results show that the proposed Contour Based Depth map Coding (CBDC) achieves a better performance than JMVC (reference software of MVC) in the high quality scenarios.

  • An Integrated Hole-Filling Algorithm for View Synthesis

    Wenxin YU  Weichen WANG  Minghui WANG  Satoshi GOTO  

     
    PAPER

      Vol:
    E96-A No:6
      Page(s):
    1306-1314

    Multi-view video can provide users with three-dimensional (3-D) and virtual reality perception through multiple viewing angles. In recent years, depth image-based rendering (DIBR) has been generally used to synthesize virtual view images in free viewpoint television (FTV) and 3-D video. To conceal the zero-region more accurately and improve the quality of a virtual view synthesized frame, an integrated hole-filling algorithm for view synthesis is proposed in this paper. The proposed algorithm contains five parts: an algorithm for distinguishing different regions, foreground and background boundary detection, texture image isophotes detection, a textural and structural isophote prediction algorithm, and an in-painting algorithm with gradient priority order. Based on the texture isophote prediction with a geometrical principle and the in-painting algorithm with a gradient priority order, the boundary information of the foreground is considerably clearer and the texture information in the zero-region can be concealed much more accurately than in previous works. The vision quality mainly depends on the distortion of the structural information. Experimental results indicate that the proposed algorithm improves not only the objective quality of the virtual image, but also its subjective quality considerably; human vision is also clearly improved based on the subjective results. In particular, the algorithm ensures the boundary contours of the foreground objects and the textural and structural information.

  • Single Image Haze Removal Using Structure-Aware Atmospheric Veil

    Yun LIU  Rui CHEN  Jinxia SHANG  Minghui WANG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2017/08/04
      Vol:
    E100-D No:11
      Page(s):
    2729-2733

    In this letter, we propose a novel and effective haze removal method by using the structure-aware atmospheric veil. More specifically, the initial atmospheric veil is first estimated based on dark channel prior and morphological operator. Furthermore, an energy optimization function considering the structure feature of the input image is constructed to refine the initial atmospheric veil. At last, the haze-free image can be restored by inverting the atmospheric scattering model. Additionally, brightness adjustment is also performed for preventing the dehazing result too dark. Experimental results on hazy images reveal that the proposed method can effectively remove the haze and yield dehazing results with vivid color and high scene visibility.

  • Multiple Region-of-Interest Based H.264 Encoder with a Detection Architecture in Macroblock Level Pipelining

    Tianruo ZHANG  Chen LIU  Minghui WANG  Satoshi GOTO  

     
    PAPER

      Vol:
    E94-C No:4
      Page(s):
    401-410

    This paper proposes a region-of-interest (ROI) based H.264 encoder and the VLSI architecture of the ROI detection algorithm. In ROI based video coding system, pre-processing unit to detect ROI should only introduce low computational complexity overhead due to the low power requirement. The Macroblocks (MBs) in ROIs are detected sequentially in the same order of H.264 encoding to satisfy the MB level pipelining of ROI detector and H.264 encoder. ROI detection is performed in a novel estimation-and-verification process with an ROI contour template. Proposed architecture can be configured to detect either single ROI or multiple ROIs in each frame and the throughput of single detection mode is 5.5 times of multiple detection mode. 98.01% and 97.89% of MBs in ROIs can be detected in single and multiple detection modes respectively. Hardware cost of proposed architecture is only 4.68 k gates. Detection speed is 753 fps for CIF format video at the operation frequency of 200 MHz in multiple detection mode with power consumption of 0.47 mW. Compared with previous fast ROI detection algorithms for video coding application, the proposed architecture obtains more accurate and smaller ROI. Therefore, more efficient ROI based computation complexity and compression efficiency optimization can be implemented in H.264 encoder.

  • A 98 GMACs/W 32-Core Vector Processor in 65 nm CMOS

    Xun HE  Xin JIN  Minghui WANG  Dajiang ZHOU  Satoshi GOTO  

     
    PAPER-High-Level Synthesis and System-Level Design

      Vol:
    E94-A No:12
      Page(s):
    2609-2618

    This paper presents a high-performance dual-issue 32-core SIMD platform for image and video processing. The SIMD cores support 8/16 bits SIMD MAC instructions, and vertical vector access. Eight cores with a 4-ports L2 cache are connected by CIB bus as a cluster. Four clusters are connected by mesh network. This hierarchical network can provide more than 192 GB/s low latency inter-core BW in average. The 4-ports L2 cache architecture is also designed to provide 192 GB/s L2 cache BW. To reduce coherence operation in large-scale SMP, an application specified protocol is proposed. Compared with MOESI, 67.8% of L1 cache energy can be saved in 32 cores case. The whole system including 32 vector cores, 256 KB L2 cache, 64-bit DDRII PHY and two PLL units, occupy 25 mm2 in 65 nm CMOS. It can achieve a peak performance of 375 GMACs and 98 GMACs/W at 1.2 V.