The search functionality is under construction.

Author Search Result

[Author] Yun LIU(7hit)

1-7hit
  • The Effect of Transverse Magnetic Field on Making & Breaking Arc Durations of Electrical Contact

    Yun LIU  Guangda XU  Laijun ZHAO  Zhenbiao LI  Makoto HASEGAWA  

     
    PAPER

      Vol:
    E95-C No:9
      Page(s):
    1481-1486

    Application of transverse magnetic field (TMF) is one of the most important ways to improve electric life and breaking capacity of DC relays. For better understanding of dependence of arc durations on transverse magnetic field, a series of experiments were conducted under an external transverse magnetic field with 12 pairs of AgSnO2 contacts in a DC 28 V 60 A/30 A/5 A circuit, respectively. By using permanent magnets, the transverse magnetic field was obtained and the magnetic flux density at the gap center was varied from 13 to 94 mT. The results show that breaking arc duration is decreased monotonically with increases in the magnetic flux density, but making arc duration isn't decreased monotonically with increases in the magnetic flux density. In addition, both the magnetic flux density and the breaking arc duration have threshold values Bl and Tbmin, respectively, which means the breaking arc duration is almost stable with the value Tbmin even if the magnetic flux density is higher than Bl.

  • Single Image Dehazing Based on Weighted Variational Regularized Model

    Hao ZHOU  Hailing XIONG  Chuan LI  Weiwei JIANG  Kezhong LU  Nian CHEN  Yun LIU  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/04/06
      Vol:
    E104-D No:7
      Page(s):
    961-969

    Image dehazing is of great significance in computer vision and other fields. The performance of dehazing mainly relies on the precise computation of transmission map. However, the computation of the existing transmission map still does not work well in the sky area and is easily influenced by noise. Hence, the dark channel prior (DCP) and luminance model are used to estimate the coarse transmission in this work, which can deal with the problem of transmission estimation in the sky area. Then a novel weighted variational regularization model is proposed to refine the transmission. Specifically, the proposed model can simultaneously refine the transmittance and restore clear images, yielding a haze-free image. More importantly, the proposed model can preserve the important image details and suppress image noise in the dehazing process. In addition, a new Gaussian Adaptive Weighted function is defined to smooth the contextual areas while preserving the depth discontinuity edges. Experiments on real-world and synthetic images illustrate that our method has a rival advantage with the state-of-art algorithms in different hazy environments.

  • Data Mining Intrusion Detection in Vehicular Ad Hoc Network

    Xiaoyun LIU  Gongjun YAN  Danda B. RAWAT  Shugang DENG  

     
    PAPER

      Vol:
    E97-D No:7
      Page(s):
    1719-1726

    The past decade has witnessed a growing interest in vehicular networking. Initially motivated by traffic safety, vehicles equipped with computing, communication and sensing capabilities will be organized into ubiquitous and pervasive networks with a significant Internet presence while on the move. Large amount of data can be generated, collected, and processed on the vehicular networks. Big data on vehicular networks include useful and sensitive information which could be exploited by malicious intruders. But intrusion detection in vehicular networks is challenging because of its unique features of vehicular networks: short range wireless communication, large amount of nodes, and high mobility of nodes. Traditional methods are hard to detect intrusion in such sophisticated environment, especially when the attack pattern is unknown, therefore, it can result unacceptable false negative error rates. As a novel attempt, the main goal of this research is to apply data mining methodology to recognize known attacks and uncover unknown attacks in vehicular networks. We are the first to attempt to adapt data mining method for intrusion detection in vehicular networks. The main contributions include: 1) specially design a decentralized vehicle networks that provide scalable communication and data availability about network status; 2) applying two data mining models to show feasibility of automated intrusion detection system in vehicular networks; 3) find the detection patterns of unknown intrusions.

  • Single Image Dehazing Algorithm Based on Modified Dark Channel Prior

    Hao ZHOU  Zhuangzhuang ZHANG  Yun LIU  Meiyan XUAN  Weiwei JIANG  Hailing XIONG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/07/14
      Vol:
    E104-D No:10
      Page(s):
    1758-1761

    Single image dehazing algorithm based on Dark Channel Prior (DCP) is widely known. More and more image dehazing algorithms based on DCP have been proposed. However, we found that it is more effective to use DCP in the RAW images before the ISP pipeline. In addition, for the problem of DCP failure in the sky area, we propose an algorithm to segment the sky region and compensate the transmission. Extensive experimental results on both subjective and objective evaluation demonstrate that the performance of the modified DCP (MDCP) has been greatly improved, and it is competitive with the state-of-the-art methods.

  • Real-Time Road-Direction Point Detection in Complex Environment

    Huimin CAI  Eryun LIU  Hongxia LIU  Shulong WANG  

     
    PAPER-Software System

      Pubricized:
    2017/11/13
      Vol:
    E101-D No:2
      Page(s):
    396-404

    A real-time road-direction point detection model is developed based on convolutional neural network architecture which can adapt to complex environment. Firstly, the concept of road-direction point is defined for either single road or crossroad. For single road, the predicted road-direction point can serve as a guiding point for a self-driving vehicle to go ahead. In the situation of crossroad, multiple road-direction points can also be detected which will help this vehicle to make a choice from possible directions. Meanwhile, different types of road surface can be classified by this model for both paved roads and unpaved roads. This information will be beneficial for a self-driving vehicle to speed up or slow down according to various road conditions. Finally, the performance of this model is evaluated on different platforms including Jetson TX1. The processing speed can reach 12 FPS on this portable embedded system so that it provides an effective and economic solution of road-direction estimation in the applications of autonomous navigation.

  • Single Image Haze Removal Using Structure-Aware Atmospheric Veil

    Yun LIU  Rui CHEN  Jinxia SHANG  Minghui WANG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2017/08/04
      Vol:
    E100-D No:11
      Page(s):
    2729-2733

    In this letter, we propose a novel and effective haze removal method by using the structure-aware atmospheric veil. More specifically, the initial atmospheric veil is first estimated based on dark channel prior and morphological operator. Furthermore, an energy optimization function considering the structure feature of the input image is constructed to refine the initial atmospheric veil. At last, the haze-free image can be restored by inverting the atmospheric scattering model. Additionally, brightness adjustment is also performed for preventing the dehazing result too dark. Experimental results on hazy images reveal that the proposed method can effectively remove the haze and yield dehazing results with vivid color and high scene visibility.

  • Infrared and Visible Image Fusion via Hybrid Variational Model Open Access

    Zhengwei XIA  Yun LIU  Xiaoyun WANG  Feiyun ZHANG  Rui CHEN  Weiwei JIANG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2023/12/11
      Vol:
    E107-D No:4
      Page(s):
    569-573

    Infrared and visible image fusion can combine the thermal radiation information and the textures to provide a high-quality fused image. In this letter, we propose a hybrid variational fusion model to achieve this end. Specifically, an ℓ0 term is adopted to preserve the highlighted targets with salient gradient variation in the infrared image, an ℓ1 term is used to suppress the noise in the fused image and an ℓ2 term is employed to keep the textures of the visible image. Experimental results demonstrate the superiority of the proposed variational model and our results have more sharpen textures with less noise.