The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Weiwei JIANG(8hit)

1-8hit
  • NiP Seed Layer Effect on [Co/Pd]n/Pd/(NiP)/FeCoC Perpendicular Recording Media for Extremely High Areal Density

    Eng Wei SOO  Weiwei JIANG  Lianjun WU  Jian-Ping WANG  

     
    PAPER

      Vol:
    E85-C No:10
      Page(s):
    1740-1744

    The effect of NiP as a seed layer for the [Co/Pd]n multilayer perpendicular recording media was studied. It was found that a thin layer of 2 nm NiP inserted between the FeCoC soft magnetic underlayer and the [Co/Pd]n recording layer improved the magnetic properties such as coercivity, squareness and nucleation field. These improvements may be due to the enhanced grain isolation promoted by the NiP seed layer, as well as the lower surface roughness of the NiP seed layer. Read/write test using Guzik spin stand with a ring-type head showed a D50 value 220 kFCI in the roll-off curve. The magnetic transitions recorded up to 390 kFCI for [Co/Pd]n media with the NiP seed layer can be observed clearly with MFM.

  • Loan Default Prediction with Deep Learning and Muddling Label Regularization

    Weiwei JIANG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2022/04/04
      Vol:
    E105-D No:7
      Page(s):
    1340-1342

    Loan default prediction has been a significant problem in the financial domain because overdue loans may incur significant losses. Machine learning methods have been introduced to solve this problem, but there are still many challenges including feature multicollinearity, imbalanced labels, and small data sample problems. To replicate the success of deep learning in many areas, an effective regularization technique named muddling label regularization is introduced in this letter, and an ensemble of feed-forward neural networks is proposed, which outperforms machine learning and deep learning baselines in a real-world dataset.

  • Single Image Dehazing Based on Weighted Variational Regularized Model

    Hao ZHOU  Hailing XIONG  Chuan LI  Weiwei JIANG  Kezhong LU  Nian CHEN  Yun LIU  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/04/06
      Vol:
    E104-D No:7
      Page(s):
    961-969

    Image dehazing is of great significance in computer vision and other fields. The performance of dehazing mainly relies on the precise computation of transmission map. However, the computation of the existing transmission map still does not work well in the sky area and is easily influenced by noise. Hence, the dark channel prior (DCP) and luminance model are used to estimate the coarse transmission in this work, which can deal with the problem of transmission estimation in the sky area. Then a novel weighted variational regularization model is proposed to refine the transmission. Specifically, the proposed model can simultaneously refine the transmittance and restore clear images, yielding a haze-free image. More importantly, the proposed model can preserve the important image details and suppress image noise in the dehazing process. In addition, a new Gaussian Adaptive Weighted function is defined to smooth the contextual areas while preserving the depth discontinuity edges. Experiments on real-world and synthetic images illustrate that our method has a rival advantage with the state-of-art algorithms in different hazy environments.

  • Single Image Dehazing Algorithm Based on Modified Dark Channel Prior

    Hao ZHOU  Zhuangzhuang ZHANG  Yun LIU  Meiyan XUAN  Weiwei JIANG  Hailing XIONG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/07/14
      Vol:
    E104-D No:10
      Page(s):
    1758-1761

    Single image dehazing algorithm based on Dark Channel Prior (DCP) is widely known. More and more image dehazing algorithms based on DCP have been proposed. However, we found that it is more effective to use DCP in the RAW images before the ISP pipeline. In addition, for the problem of DCP failure in the sky area, we propose an algorithm to segment the sky region and compensate the transmission. Extensive experimental results on both subjective and objective evaluation demonstrate that the performance of the modified DCP (MDCP) has been greatly improved, and it is competitive with the state-of-the-art methods.

  • Single Image Dehazing Based on Sky Area Segmentation and Image Fusion

    Xiangyang CHEN  Haiyue LI  Chuan LI  Weiwei JIANG  Hao ZHOU  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2023/04/24
      Vol:
    E106-D No:7
      Page(s):
    1249-1253

    Since the dark channel prior (DCP)-based dehazing method is ineffective in the sky area and will cause the problem of too dark and color distortion of the image, we propose a novel dehazing method based on sky area segmentation and image fusion. We first segment the image according to the characteristics of the sky area and non-sky area of the image, then estimate the atmospheric light and transmission map according to the DCP and correct them, and then fuse the original image after the contrast adaptive histogram equalization to improve the details information of the image. Experiments illustrate that our method performs well in dehazing and can reduce image distortion.

  • Infrared and Visible Image Fusion via Hybrid Variational Model Open Access

    Zhengwei XIA  Yun LIU  Xiaoyun WANG  Feiyun ZHANG  Rui CHEN  Weiwei JIANG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2023/12/11
      Vol:
    E107-D No:4
      Page(s):
    569-573

    Infrared and visible image fusion can combine the thermal radiation information and the textures to provide a high-quality fused image. In this letter, we propose a hybrid variational fusion model to achieve this end. Specifically, an ℓ0 term is adopted to preserve the highlighted targets with salient gradient variation in the infrared image, an ℓ1 term is used to suppress the noise in the fused image and an ℓ2 term is employed to keep the textures of the visible image. Experimental results demonstrate the superiority of the proposed variational model and our results have more sharpen textures with less noise.

  • IAD-Net: Single-Image Dehazing Network Based on Image Attention Open Access

    Zheqing ZHANG  Hao ZHOU  Chuan LI  Weiwei JIANG  

     
    LETTER-Image Processing and Video Processing

      Pubricized:
    2024/06/20
      Vol:
    E107-D No:10
      Page(s):
    1380-1384

    Single-image dehazing is a challenging task in computer vision research. Aiming at the limitations of traditional convolutional neural network representation capabilities and the high computational overhead of the self-attention mechanism in recent years, we proposed image attention and designed a single image dehazing network based on the image attention: IAD-Net. The proposed image attention is a plug-and-play module with the ability of global modeling. IAD-Net is a parallel network structure that combines the global modeling ability of image attention and the local modeling ability of convolution, so that the network can learn global and local features. The proposed network model has excellent feature learning ability and feature expression ability, has low computational overhead, and also improves the detail information of hazy images. Experiments verify the effectiveness of the image attention module and the competitiveness of IAD-Net with state-of-the-art methods.

  • Edge-SiamNet and Edge-TripleNet: New Deep Learning Models for Handwritten Numeral Recognition

    Weiwei JIANG  Le ZHANG  

     
    LETTER-Image Recognition, Computer Vision

      Pubricized:
    2019/12/09
      Vol:
    E103-D No:3
      Page(s):
    720-723

    Handwritten numeral recognition is a classical and important task in the computer vision area. We propose two novel deep learning models for this task, which combine the edge extraction method and Siamese/Triple network structures. We evaluate the models on seven handwritten numeral datasets and the results demonstrate both the simplicity and effectiveness of our models, comparing to baseline methods.