1-5hit |
Chi-Min LI Yu-Hsuan LEE Yi-Ting LIAO Pao-Jen WANG
Currently, unmanned aerial vehicles (UAV) have been widely used in many applications, such as in transportation logistics, public safety, or even in non-terrestrial networks (NTN). In all these scenarios, it is an important issue to model channel behavior between the UAV and the user equipment (UE) on the ground. Among these channel features, a critical parameter that dominates channel behavior is the probability of the line-of-sight (LOS), since the statistical property of the channel fading can be either Ricean or Rayleigh, depending on the existence of LOS. Besides, with knowledge of LOS probability, operators can design approaches or schemes to maximum system performance, such as the serving coverage, received signal to noise ratio (SNR), or the bit error rate (BER) with the limited transmitted power. However, the LOS UAV channel is likely difficult to acquire or derive, as it depends on the deployment scenario, such as an urban or rural area. In this paper, we generated four different scenarios defined by the ITU via the ray tracing simulator. Then, we used the spatial geometric relation and the curve fitting approach to derive the analytic models to predict the probability of the UAV LOS channels for different scenarios. Results show that our proposed relationships yield better prediction results than the methods in the literature. Besides, an example of establishing UAV self-awareness ability for the deployed environment via using proposed models is also provided in this paper.
Chi-Min LI Shen-Wen WANG Pao-Jen WANG
Given the rapid development of current wireless communication systems has led to two major challenges: energy conservation and interference avoidance. Addressing these challenges is critical for sustaining modern green communications. This paper proposes two energy-efficient schemes for a heterogeneous network environment. The schemes include a cell switching strategy and a power control technique. The proposed schemes can save energy while maintaining the service quality for users. Simulation results showed that compared with conventional schemes, the proposed schemes reduced energy consumption by up to 18% more and further enhanced the system energy efficiency by up to 22% without using any switch-off procedure.
Chi-Min LI Dong-Lin LU Pao-Jen WANG
Currently, as the widespread usage of the smart devices in our daily life, the demands of high data rate and low latency services become important issues to facilitate various applications. However, high data rate service usually implies large bandwidth requirement. To solve the problem of bandwidth shortage below 6GHz (sub-6G), future wireless communications can be up-converted to the millimeter-wave (mm-wave) bands. Nevertheless, mm-wave frequency bands suffer from high channel attenuation and serious penetration loss compared with sub-6G frequency bands, and the signal transmission in the indoor environment will furthermore be affected by various partition materials, such as concrete, wood, glass, etc. Therefore, the fifth-generation (5G) mobile communication system may use multiple small cells (SC) to overcome the signal attenuation caused by using mm-wave bands. This paper will analyze the attenuation characteristics of some common partition materials in indoor environments. Besides, the performances, such as the received signal power, signal to interference plus noise ratio (SINR) and system capacity for different SC deployments are simulated and analyzed to provide the suitable guideline for each SC deployments.
Chi-Min LI Shao-Min WEN Pao-Jen WANG Jia-Chyi WU I-Tseng TANG
In this paper, we propose a Frequency Domain Equalizer (FDE) without inserting the Guard Interval (GI) at the transmitter which is applicable to the Wide-band Code Division Multiple Access (WCDMA) and Orthogonal Frequency-Division Multiplexing (OFDM) systems. The proposed FDE adopts the Overlap-Cut (OC) method to avoid the Inter-Block Interference (IBI) and exploits the decision feedback structure to improve the Bit Error Rate (BER) performance. Without inserting the GI, the proposed FDE will be compatible to the frame format of the current High Speed Downlink Packet Access (HSDPA). Besides, it can improve the BER performance and bandwidth utilization when the GI is less than the channel length of the OFDM system.
Chi-Min LI Yi-Ting LIAO Pao-Jen WANG
In order to satisfy the user's demands for faster data rates and higher channel capacity, fifth generation (5G) wireless networks operate in the frequency at both sub-6GHz and millimeter wave bands for more abundant spectrum resources. Compared with the sub-6G bands, signals transmitted in the millimeter bands suffer from severe channel attenuation. A drone small cell (DSC) has been proposed recently to provide services outdoors. Not only does DSC have high maneuverability, it can also be deployed quickly in the required regions. Therefore, it is an important issue to establish the Air-to-Ground (ATG) channel model by taking into account the effects of building shielding and excess loss in various DSC deployments at different frequency bands. In this paper, we synthesize the ATG channels of the DSC and approximate the excess path loss of the ATG for different urban environments based on the ITU-R standard. With the approximated curve fitting relations, the proper height of the drone base station that satisfies a certain connected probability can be easily obtained for different scenarios.