The search functionality is under construction.

Author Search Result

[Author] Pao-Jen WANG(6hit)

1-6hit
  • Model of the LOS Probability for the UAV Channel and Its Application for Environment Awareness

    Chi-Min LI  Yu-Hsuan LEE  Yi-Ting LIAO  Pao-Jen WANG  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2022/02/01
      Vol:
    E105-B No:8
      Page(s):
    975-980

    Currently, unmanned aerial vehicles (UAV) have been widely used in many applications, such as in transportation logistics, public safety, or even in non-terrestrial networks (NTN). In all these scenarios, it is an important issue to model channel behavior between the UAV and the user equipment (UE) on the ground. Among these channel features, a critical parameter that dominates channel behavior is the probability of the line-of-sight (LOS), since the statistical property of the channel fading can be either Ricean or Rayleigh, depending on the existence of LOS. Besides, with knowledge of LOS probability, operators can design approaches or schemes to maximum system performance, such as the serving coverage, received signal to noise ratio (SNR), or the bit error rate (BER) with the limited transmitted power. However, the LOS UAV channel is likely difficult to acquire or derive, as it depends on the deployment scenario, such as an urban or rural area. In this paper, we generated four different scenarios defined by the ITU via the ray tracing simulator. Then, we used the spatial geometric relation and the curve fitting approach to derive the analytic models to predict the probability of the UAV LOS channels for different scenarios. Results show that our proposed relationships yield better prediction results than the methods in the literature. Besides, an example of establishing UAV self-awareness ability for the deployed environment via using proposed models is also provided in this paper.

  • Energy Efficient Schemes for Heterogeneous Network Based on Switching Strategy and Power Control

    Chi-Min LI  Shen-Wen WANG  Pao-Jen WANG  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E99-B No:5
      Page(s):
    1216-1223

    Given the rapid development of current wireless communication systems has led to two major challenges: energy conservation and interference avoidance. Addressing these challenges is critical for sustaining modern green communications. This paper proposes two energy-efficient schemes for a heterogeneous network environment. The schemes include a cell switching strategy and a power control technique. The proposed schemes can save energy while maintaining the service quality for users. Simulation results showed that compared with conventional schemes, the proposed schemes reduced energy consumption by up to 18% more and further enhanced the system energy efficiency by up to 22% without using any switch-off procedure.

  • Indoor Partition Attenuations and Base Station Deployments for the 5G Wireless Communications

    Chi-Min LI  Dong-Lin LU  Pao-Jen WANG  

     
    PAPER-Propagation

      Pubricized:
    2021/12/03
      Vol:
    E105-B No:6
      Page(s):
    729-736

    Currently, as the widespread usage of the smart devices in our daily life, the demands of high data rate and low latency services become important issues to facilitate various applications. However, high data rate service usually implies large bandwidth requirement. To solve the problem of bandwidth shortage below 6GHz (sub-6G), future wireless communications can be up-converted to the millimeter-wave (mm-wave) bands. Nevertheless, mm-wave frequency bands suffer from high channel attenuation and serious penetration loss compared with sub-6G frequency bands, and the signal transmission in the indoor environment will furthermore be affected by various partition materials, such as concrete, wood, glass, etc. Therefore, the fifth-generation (5G) mobile communication system may use multiple small cells (SC) to overcome the signal attenuation caused by using mm-wave bands. This paper will analyze the attenuation characteristics of some common partition materials in indoor environments. Besides, the performances, such as the received signal power, signal to interference plus noise ratio (SINR) and system capacity for different SC deployments are simulated and analyzed to provide the suitable guideline for each SC deployments.

  • Novel Miniaturized Harmonic Suppression Branch-Line Coupler Using Artificial Transmission Lines for UHF Applications

    Chia-Hao KU  Hsien-Wen LIU  Yu-Shu LIN  Kuei-Yi LIN  Pao-Jen WANG  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E94-C No:7
      Page(s):
    1237-1239

    A planar miniaturized branch-line coupler with harmonic suppression property for UHF band applications is presented in this paper. By properly synthesizing the LC-tanks that employ artificial transmission lines, two pairs of quarter-wavelength branch-lines to respectively meet characteristic impedances of 35.4 and 50 ohms can be obtained with the coupler. For the operating band, it can achieve good 3 dB power division with a 90° phase difference in the outputs of the through and coupled arms. The coupler also has a small area of 20.5(L)18(W) mm2, corresponding to 0.11 λg0.1 λg at 922 MHz. Compared with conventional couplers, the proposed design not only offers a wide bandwidth of more than 230 MHz within 1° or 1 dB, but also works with additional harmonic suppression for achieving better performance. Therefore, the proposed branch-line coupler with a compact size is well suitable for power division application.

  • An Overlap-Cut Frequency Domain Equalizer with Decision Feedback

    Chi-Min LI  Shao-Min WEN  Pao-Jen WANG  Jia-Chyi WU  I-Tseng TANG  

     
    PAPER

      Vol:
    E92-B No:5
      Page(s):
    1475-1483

    In this paper, we propose a Frequency Domain Equalizer (FDE) without inserting the Guard Interval (GI) at the transmitter which is applicable to the Wide-band Code Division Multiple Access (WCDMA) and Orthogonal Frequency-Division Multiplexing (OFDM) systems. The proposed FDE adopts the Overlap-Cut (OC) method to avoid the Inter-Block Interference (IBI) and exploits the decision feedback structure to improve the Bit Error Rate (BER) performance. Without inserting the GI, the proposed FDE will be compatible to the frame format of the current High Speed Downlink Packet Access (HSDPA). Besides, it can improve the BER performance and bandwidth utilization when the GI is less than the channel length of the OFDM system.

  • Excess Path Loss Prediction of the Air to Ground Channel for Drone Small Cell

    Chi-Min LI  Yi-Ting LIAO  Pao-Jen WANG  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/07/13
      Vol:
    E105-B No:1
      Page(s):
    44-50

    In order to satisfy the user's demands for faster data rates and higher channel capacity, fifth generation (5G) wireless networks operate in the frequency at both sub-6GHz and millimeter wave bands for more abundant spectrum resources. Compared with the sub-6G bands, signals transmitted in the millimeter bands suffer from severe channel attenuation. A drone small cell (DSC) has been proposed recently to provide services outdoors. Not only does DSC have high maneuverability, it can also be deployed quickly in the required regions. Therefore, it is an important issue to establish the Air-to-Ground (ATG) channel model by taking into account the effects of building shielding and excess loss in various DSC deployments at different frequency bands. In this paper, we synthesize the ATG channels of the DSC and approximate the excess path loss of the ATG for different urban environments based on the ITU-R standard. With the approximated curve fitting relations, the proper height of the drone base station that satisfies a certain connected probability can be easily obtained for different scenarios.