The search functionality is under construction.

Author Search Result

[Author] Chin-Sean SUM(9hit)

1-9hit
  • Error Analysis of Hybrid DS-Multiband-UWB Multiple Access System in the Presence of Narrowband Interference

    Chin-Sean SUM  Mohammad Azizur RAHMAN  Shigenobu SASAKI  Hiroshi HARADA  Shuzo KATO  

     
    PAPER-Ultra Wideband System

      Vol:
    E92-A No:9
      Page(s):
    2167-2176

    This paper proposes a hybrid multiband (MB) ultra wideband (UWB) system with direct sequence (DS) spreading. The theoretical error analysis for the DS-MB-UWB multiple access system with Rake receiver in the presence of multipath and narrowband interference is developed. The developed theoretical framework models the multiple access interference (MAI), multipath interference (MI) and narrowband interference for the designed UWB system. It is shown that the system error performance corresponding to the combining effects of these interference can be accurately modeled and calculated. Monte Carlo simulation results are provided to validate the accuracy of the model. Additionally, it is found that narrowband interference can be mitigated effectively in the multiband UWB system by suppressing the particular UWB sub-band co-existing with the interfering narrowband signal. A typical improvement of 5 dB can be achieved with 75% sub-band power suppression. On the other hand, suppression of UWB sub-band is also found to decrease frequency diversity, thus facilitating the increase of MAI. In this paper, the developed model is utilized to determine the parameters that optimize the UWB system performance by minimizing the effective interference.

  • Throughput and Error Analysis of a Space-Time Resource Management Scheme for Multi-Gbps Millimeter-Wave WPAN System

    Chin-Sean SUM  Mohammad Azizur RAHMAN  Zhou LAN  Ryuhei FUNADA  Junyi WANG  Tuncer BAYKAS  Hiroshi HARADA  Shuzo KATO  

     
    PAPER

      Vol:
    E92-A No:11
      Page(s):
    2659-2668

    In this paper, throughput and error performance analysis is conducted on the proposed space-time resource management (STRM) scheme to realize a multi-Gbps millimeter-wave wireless personal area network (WPAN) system. The proposed STRM allows multiple peer-to-peer communication links to occupy the same time-division-multiple-access (TDMA) time slot, in contrary to the conventional TDMA system that allocates only one time slot to one communication link. Theoretical analysis is performed to investigate the achievable system throughput in the presence of co-channel interference (CCI) generated by communication links co-sharing the same time slot. To increase accuracy, the analysis results are validated by Monte Carlo simulations. Firstly, it is found that the upper bound of the achievable throughput increases linearly with the number of communication links sharing the same time slot. However, optimum throughput exists corresponding to the CCI present in the system. Secondly, by manipulating a parameter that controls the allowable CCI in the network, the system throughput can be optimized. Lastly, it is also found that in a millimeter-wave band system, a victim system with transmitter-receiver separation of 1-meter can achieve bit error rate (BER) of 10-6 provided that the interferer is at least 6-meters away.

  • Hidden Node due to Multiple Transmission Power Level for White Space Radio Operating in the TV Bands

    Chin-Sean SUM  Gabriel Porto VILLARDI  Mohammad Azizur RAHMAN  Junyi WANG  Zhou LAN  Chunyi SONG  Hiroshi HARADA  

     
    PAPER-Communication Theory and Signals

      Vol:
    E95-A No:10
      Page(s):
    1749-1758

    This paper presents the analysis on hidden node due to multiple transmission power level and its potential impact to system performance of White Space radio operating in the TV bands, a.k.a TV white space (TVWS). For this purpose, a generic interference model for determining the hidden node occurrence probability based on realistic physical (PHY) layer model is developed. Firstly, the generic hidden node interference model is constructed considering typical TVWS radio network deployment scenario. Emphasis is given on cases where the hidden node scenario involves multiple transmission power level. Secondly, the PHY layer design and channel propagation are modeled to analyze the realistic operating range of the TVWS radio. By combining the hidden node interference model and the PHY layer/propagation models, the realistic probability of hidden node occurrence is calculated. Finally, the performance degradation in the victim receiver due to interference generated by the potential hidden node is quantified. As a result, for urban environment, it is found that for networks consisting of devices with multiple transmit power level, the probability of hidden node occurrence is similar to that of networks consisting of devices with uni-transmit power level, provided that the interferer-victim separation distance in the former is 800 m farther apart. Furthermore, this number may increase to a maximum of 1.1 km in a suburban environment. Also, it is found that if the hidden node actually occurs, a co-channel interference (CCI) of -15 dB typically causes a degradation of 2 dB in the victim receiver.

  • Error Probability of MRC in Frequency Selective Nakagami Fading in the Presence of CCI and ACI

    Mohammad Azizur RAHMAN  Chin-Sean SUM  Ryuhei FUNADA  Shigenobu SASAKI  Tuncer BAYKAS  Junyi WANG  Hiroshi HARADA  Shuzo KATO  

     
    PAPER

      Vol:
    E92-A No:11
      Page(s):
    2679-2687

    An exact expression of error rate is developed for maximal ratio combining (MRC) in an independent but not necessarily identically distributed frequency selective Nakagami fading channel taking into account inter-symbol, co-channel and adjacent channel interferences (ISI, CCI and ACI respectively). The characteristic function (CF) method is adopted. While accurate analysis of MRC performance cannot be seen in frequency selective channel taking ISI (and CCI) into account, such analysis for ACI has not been addressed yet. The general analysis presented in this paper solves a problem of past and present interest, which has so far been studied either approximately or in simulations. The exact method presented also lets us obtain an approximate error rate expression based on Gaussian approximation (GA) of the interferences. It is shown, especially while the channel is lightly faded, has fewer multipath components and a decaying delay profile, the GA may be substantially inaccurate at high signal-to-noise ratio. However, the exact results also reveal an important finding that there is a range of parameters where the simpler GA is reasonably accurate and hence, we don't have to go for more involved exact expression.

  • Impact of Chip Duty Factor on DS, TH and DS-TH UWB Systems in Realistic Environment

    Chin-Sean SUM  Shigenobu SASAKI  Hiroshi HARADA  

     
    PAPER-UWB System

      Vol:
    E93-A No:10
      Page(s):
    1716-1723

    In this paper, the impact of chip duty factor (DF) on direct sequence (DS), time hopping (TH) and hybrid DS-TH ultra wideband (UWB) systems is investigated in realistic environments. Rake receivers are designed to perform energy capture (EC) on received UWB signals over multipath and multi-user environment in the presence of narrowband interference. It is found that by applying lower DF in the signal design, multipath resolvability can be increased and system performance can be improved. However, in contrary to the common belief, lower DF does not always contribute to performance improvement. On the other hand, it is observed that at extremely low DF, EC capability may be compromised, causing performance degradation. The optimum DF values for respective systems are determined and discussed in this paper. Additionally, the strength and tradeoff for DS, TH and DS-TH UWB systems employing varying DF are investigated and compared over multipath and multi-user environment. In a multipath environment, a selective Rake receiver with less than 10 fingers is found to be sufficient for energy capture. In a single user environment, DS-UWB system has the most superior performance, followed by DS-TH-UWB and TH-UWB systems. And in a multi-user environment, DS-TH-UWB is found to outperform the rest, followed by DS-UWB and TH-UWB systems.

  • The Impact of Sub-Band Spreading Bandwidth on DS-MB-UWB System over Multipath and Narrowband Interference

    Chin-Sean SUM  Hiroshi HARADA  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E96-A No:3
      Page(s):
    740-744

    In this paper, we investigate the impact of different sub-band spreading bandwidth (SSBW) on a direct sequence (DS) multiband (MB) ultra wideband (UWB) system in multipath and narrowband interference over realistic UWB channel models based on actual measurements. As an approach to effectively mitigate multipath and narrowband interference, the DS-MB-UWB system employs multiple sub-bands instead of a wide single band for data transmission. By using spreading chips with different duration settings, the SSBW can be manipulated. As a result, it is observed that increasing SSBW does not always improve system performance. Optimum SSBW values exist and are found to vary in accordance to different operating parameters such as the number of sub-bands and types of propagation channel model. Additionally, we have also found that system performance in the presence of narrowband interference is heavily dependent on the number of employed sub-bands.

  • Interference Mitigation Capability of a Low Duty DS-Multiband-UWB System in Realistic Environment

    Chin-Sean SUM  Shigenobu SASAKI  Hiroshi HARADA  

     
    PAPER

      Vol:
    E94-A No:12
      Page(s):
    2762-2772

    In this paper, the performance of a low duty factor (DF) hybrid direct sequence (DS) multiband (MB)-pulsed ultra wideband (UWB) system is evaluated over realistic propagation channels to highlight its capability of interference mitigation. The interference mitigation techniques incorporated in the DS-MB-UWB system is a novel design that includes the utilization of the frequency-agile multiple sub-band configuration and the coexistence-friendly low DF signaling. The system design consists of a Rake type receiver over multipath and multi-user channel in the presence of a coexisting narrowband interferer. The propagation channels are modeled based on actual measurement data. Firstly, by suppressing the power in the particular sub-band coexisting with the narrowband signal, performance degradation due to narrowband interference can be improved. It is observed that by fully suppressing the sub-band affected by the narrowband signal, a typical 1-digit performance improvement (e.g. BER improves from 10-3 to 10-4) can be achieved. Secondly, by employing lower DF signaling, self interference (SI) and multi-user interference (MUI) can be mitigated. It is found that a typical 3 dB improvement is achieved by reducing the DF from 0.5 to 0.04. Together, the sub-band power suppression and low DF signaling are shown to be effective mitigation techniques against environment with the presence of SI, MUI and narrowband interference.

  • On Communication and Interference Range of Multi-Gbps Millimeter-Wave WPAN System

    Chin-Sean SUM  Zhou LAN  Junyi WANG  Hiroshi HARADA  Shuzo KATO  

     
    LETTER

      Vol:
    E93-A No:12
      Page(s):
    2700-2703

    This paper investigates the communication range and interference range of millimeter-wave wireless personal area networks (WPAN) based on realistic system design. Firstly, the effective communication range of the millimeter-wave networks are calculated based on realistic physical (PHY) layer design and 60 GHz channel obtained from actual measurements. Secondly, an interference model is developed to facilitate the analysis of the impact of interferer-to-victim range on the victim link performance. It is found that system with BPSK modulation is able to support use cases with higher number of portable devices within a 3 m range, while system with 16QAM modulation is more suitable for fixed high speed data streaming devices within a shorter range of 1 m. Also, the interferer-to-victim range that causes no interference in all conditions is found to be approximately 40 m, while a 25 m range causes a typical bit error rate (BER) degradation of 1-digit (e.g. BER = 10-6 to 10-5).

  • Design of the Start-Frame-Delimiter Pair for 802.15 Smart Utility Network System

    Liru LU  Hiroshi HARADA  Ryuhei FUNADA  Chin-Sean SUM  

     
    PAPER-Transmission Systems and Transmission Equipment for Communications

      Vol:
    E96-B No:3
      Page(s):
    730-736

    The Start-frame-delimiter (SFD) is crucial in packet-based communications system since it indicates the end of preamble and the start of a frame. In 802.15 smart utility network system, the function of SFD is extended. Two different SFDs are used for achieving frame synchronization and at the same time, to differentiate coded and uncoded packets. This paper proposes a systematic method for the selection of SFD pair for FSK based systems. The design method is adopted by 802.15.4g Task Group with the backward compatibility to IEEE 802.15.4d systems taken into account. Four selection criteria are specified and discussed to determine the pair of sequences providing least packet error detection rate with the consideration of eliminating the adjacent channel image signal commonly occurred in the low IF receiver. The probability of false alarm and miss detection is analyzed to verify the effectiveness of the proposed selection method. The simulation results confirm that error frame detection rate of 1e-3 can be achieved with selected SFD sequences. The proposed method for selection of SFD pairs ensures a robust packet header and thus better payload protection. The SFD design approach is applicable to other packet-based wireless communication FSK systems with the support of more than one SFD sequence.