The search functionality is under construction.

Author Search Result

[Author] Ching-Lin FAN(2hit)

1-2hit
  • Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuits for Active Matrix Organic Light Emitting Diodes

    Ching-Lin FAN  Yu-Sheng LIN  Yan-Wei LIU  

     
    LETTER-Electronic Displays

      Vol:
    E93-C No:5
      Page(s):
    712-714

    A new pixel design and driving method for active matrix organic light emitting diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) with a voltage programming method are proposed and verified using the SPICE simulator. We had employed an appropriate TFT model in SPICE simulation to demonstrate the performance of the pixel circuit. The OLED anode voltage variation error rates are below 0.35% under driving TFT threshold voltage deviation (Δ Vth = 0.33 V). The OLED current non-uniformity caused by the OLED threshold voltage degradation (Δ VTO = +0.33 V) is significantly reduced (below 6%). The simulation results show that the pixel design can improve the display image non-uniformity by compensating for the threshold voltage deviation in the driving TFT and the OLED threshold voltage degradation at the same time.

  • Effects of Rapid Thermal Annealing on Poly-Si TFT with Different Gate Oxide Thickness

    Ching-Lin FAN  Yi-Yan LIN  Yan-Hang YANG  Hung-Che CHEN  

     
    LETTER-Electronic Displays

      Vol:
    E93-C No:1
      Page(s):
    151-153

    The electrical properties of poly-Si thin film transistors (TFTs) using rapid thermal annealing with various gate oxide thicknesses were studied in this work. It was found that Poly-Si TFT electrical characteristics with the thinnest gate oxide thickness after RTA treatment exhibits the largest performance improvement compared to TFT with thick oxide as a result of the increased incorporated amounts of the nitrogen and oxygen. Thus, the combined effects can maintain the advantages and avoid the disadvantages of scaled-down oxide, which is suitable for small-to-medium display mass production.