The search functionality is under construction.

Author Search Result

[Author] Ching-Wen HSUE(7hit)

1-7hit
  • Modeling the Imperfect Ground of Printed Circuit Boards Based on TEM Assumption

    I-Fong CHEN  Ching-Wen HSUE  Ming-Chih KUAN  Wen-Yuh LUO  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E83-B No:9
      Page(s):
    2124-2129

    The radiation emission in far zones from printed circuit boards (PCBs) is obtained by treating lines on PCBs as transmission lines and calculating the far-field emission due to current distribution on lines. In this paper, we present a more precise circuit model, based on TEM assumption, to decompose the total current into differential-mode current and common-mode current. This circuit model is based on transmission line model, but it considers the effect of ground trace. The finite size ground trace can be viewed as an inductive reactance. A knowledge of the net inductance of the ground trace can aid in the analysis and investigation of PCBs emission. We show the derived equations of the modified transmission lines for the geometrics of practical interest. As time-varying current passes through such ground trace, a voltage drop due to the inductance of the trace will act as a source of the common-mode current. Furthermore, charge stored in capacitance between signal and ground traces will cause the current pulses returning to their source. The magnitudes of currents are slightly unequal in the signal and ground traces, which can cause common-mode current to flow. An unbalanced circuit on a PCB constructed with signal and ground trace pairs will radiate as an asymmetric folded-dipole. By antenna theory, the contribution of differential-mode and common-mode currents to radiated emission of PCBs can be calculated. In addition, comparisons between experimental results and calculation results are also given.

  • Analysis of Radiated Emission in Multi-Microstrip Lines above Finite Size Ground Plane

    I-Fong CHEN  Chai-Mei PENG  Ching-Wen HSUE  

     
    LETTER-Energy in Electronics Communications

      Vol:
    E88-B No:4
      Page(s):
    1748-1752

    This paper presents an analytical model for the electromagnetic radiation in multi-microstrip lines covering the frequency range from 30 MHz to 1 GHz. The radiated emissions of multi-microstrip structure can be divided into the summation of radiated emissions of multi-individual microstrip structures. It is done by modelling the imperfect ground effect of the PCBs. Here we present a circuit model based on traditional transmission lines (TMLs) model. For more accurate analysis of the imperfect ground effect in multi-microstrip lines, we will divide the equivalent circuit model into N sections, based on transverse electromagnetic (TEM) assumption, to estimate the electromagnetic interference (EMI) of multi-microstrip lines. The quantitative value of induced current distribution along the ground return path depends on the physical size, geometry and length of ground trace. Measured data are presented to confirm the results of numerical analysis and the computer simulations with a software package based on the Finite Element Method. A knowledge of EMI source mechanism and their relationship to layout geometries is necessary to determine the essential features that must be modelled to estimate emissions in PCBs design.

  • Modified Tab Monopole for Triple-Band Cellular Phone Antenna

    I-Fong CHEN  Ching-Wen HSUE  

     
    LETTER-Antenna and Propagation

      Vol:
    E85-B No:8
      Page(s):
    1631-1635

    A new type of triple-band antenna is introduced by combing a tab monopole antenna (TMA) and a planar inverted F antenna (PIFA). The antenna configuration is shown to operate at three discrete frequencies: GSM 900, GSM 1800 (DCS) and GSM 1900 (PCS). The performance of an antenna is presented as well as the results of the computer simulations with a software package based on the Finite Element Method. The simulated results with the real antenna's experimental results. The advantage of the design suggested in this paper is its simplicity of manufacturing and low cost.

  • Evaluation of Common-Mode Radiation from Printed Circuit Boards by Modelling Imperfect Ground Effect

    I-Fong CHEN  Ching-Wen HSUE  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E85-B No:12
      Page(s):
    2924-2933

    Fundamental EMI source that generates common-mode radiation from printed circuit boards (PCBs) is investigated here. It is done by modelling the ground lines of PCBs as imperfect ground. The radiation emission in the far zones from PCBs is obtained by regarding interconnects on PCBs as transmission lines and the far field emission is evaluated based on the current distribution of the lines. The finite size ground trace is defined as an imperfect ground, that can be viewed as an inductive reactance which, in turn, causes the ground return path to radiate as a wire antenna. For the accurate analysis of imperfect ground effect, we divide the equivalent circuit into N sections. In addition, based on transverse electromagnetic (TEM) assumption, we estimate the electromagnetic interference (EMI) of three typical PCB geometries, namely, coplanar strips, parallel-plate strips and microstrips. The quantitative value of induced current distribution along the ground return path depends on the physical size, geometry and length of ground traces. Measured data are presented to confirm the result of numerical analysis. A knowledge of EMI source mechanisms and their relationship to layout geometries is necessary to determine the essential features that must be taken into account to estimate emissions and provide direction for reducing EMI due to interconnects on PCBs.

  • Modified Printed Folded λ/2 Dipole Antenna for DVB Applications

    Chia-Mei PENG  I-Fong CHEN  Ching-Wen HSUE  

     
    LETTER-Antennas and Propagation

      Vol:
    E90-B No:10
      Page(s):
    2991-2994

    In this letter, we present a modified printed folded λ/2 dipole antenna design for Digital Video Broadcasting (DVB) applications in UHF band (470-862 MHz). The arms of dipole are meandered to yield an asymmetrical structure. Wideband operation is obtained by increasing dipole-area. The impedance matching of the dipole structure is obtained by inserting some slots on the dipole-arms. This antenna combines omni-directional radiation pattern and wide bandwidth in an easy-to-fabricate structure. The experimental results of the constructed prototype are presented.

  • Design of Broadband Amplifier Embedded with Band-Pass Filter Using Discrete-Time Technique

    Chih-Hao LU  Ching-Wen HSUE  Bin-Chang CHIEU  Hsiu-Wei LIU  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E94-C No:5
      Page(s):
    882-889

    This paper presents an ultra-wideband amplifier embedded with band-pass filter design. The scattering parameters of a frequency-domain GaAs field effect transistor are converted into z-domain representations by employing the weighted linear least squares method. A least squares scheme is employed to obtain characteristic impedances of transmission line elements that form the amplifier having a flat gain in the passband and good fall-off selectivity in the stopband. Experimental results illustrate the validity of the proposed design method.

  • Inverse Scattering of Nonuniform Transmission Lines by Using Arbitrary Waveform

    Te-Wen PAN  Ching-Wen HSUE  

     
    PAPER-Transmission Systems and Transmission Equipment

      Vol:
    E83-B No:12
      Page(s):
    2581-2584

    A novel technique is developed to reconstruct a nonuniform transmission line by using arbitrary incident waveforms. By discretizing both the incident and reflected waves, we find that the ratio of reflected wave to incident wave has the same form as the reflection coefficient obtained by treating a nonuniform line as a cascaded, multiple-section signal line. A reconstruction scheme is derived to get the impedance profile of a nonuniform line. Some examples are presented to illustrate this new technique.