The search functionality is under construction.

Author Search Result

[Author] Christopher L. AYALA(2hit)

1-2hit
  • Adiabatic Quantum-Flux-Parametron: A Tutorial Review Open Access

    Naoki TAKEUCHI  Taiki YAMAE  Christopher L. AYALA  Hideo SUZUKI  Nobuyuki YOSHIKAWA  

     
    INVITED PAPER

      Pubricized:
    2022/01/19
      Vol:
    E105-C No:6
      Page(s):
    251-263

    The adiabatic quantum-flux-parametron (AQFP) is an energy-efficient superconductor logic element based on the quantum flux parametron. AQFP circuits can operate with energy dissipation near the thermodynamic and quantum limits by maximizing the energy efficiency of adiabatic switching. We have established the design methodology for AQFP logic and developed various energy-efficient systems using AQFP logic, such as a low-power microprocessor, reversible computer, single-photon image sensor, and stochastic electronics. We have thus demonstrated the feasibility of the wide application of AQFP logic in future information and communications technology. In this paper, we present a tutorial review on AQFP logic to provide insights into AQFP circuit technology as an introduction to this research field. We describe the historical background, operating principle, design methodology, and recent progress of AQFP logic.

  • A 16-Bit Parallel Prefix Carry Look-Ahead Kogge-Stone Adder Implemented in Adiabatic Quantum-Flux-Parametron Logic

    Tomoyuki TANAKA  Christopher L. AYALA  Nobuyuki YOSHIKAWA  

     
    PAPER

      Pubricized:
    2022/01/19
      Vol:
    E105-C No:6
      Page(s):
    270-276

    Extremely energy-efficient logic devices are required for future low-power high-performance computing systems. Superconductor electronic technology has a number of energy-efficient logic families. Among them is the adiabatic quantum-flux-parametron (AQFP) logic family, which adiabatically switches the quantum-flux-parametron (QFP) circuit when it is excited by an AC power-clock. When compared to state-of-the-art CMOS technology, AQFP logic circuits have the advantage of relatively fast clock rates (5 GHz to 10 GHz) and 5 - 6 orders of magnitude reduction in energy before cooling overhead. We have been developing extremely energy-efficient computing processor components using the AQFP. The adder is the most basic computational unit and is important in the development of a processor. In this work, we designed and measured a 16-bit parallel prefix carry look-ahead Kogge-Stone adder (KSA). We fabricated the circuit using the AIST 10 kA/cm2 High-speed STandard Process (HSTP). Due to a malfunction in the measurement system, we were not able to confirm the complete operation of the circuit at the low frequency of 100 kHz in liquid He, but we confirmed that the outputs that we did observe are correct for two types of tests: (1) critical tests and (2) 110 random input tests in total. The operation margin of the circuit is wide, and we did not observe any calculation errors during measurement.