The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Christos FALOUTSOS(2hit)

1-2hit
  • Fraud Detection in Comparison-Shopping Services: Patterns and Anomalies in User Click Behaviors

    Sang-Chul LEE  Christos FALOUTSOS  Dong-Kyu CHAE  Sang-Wook KIM  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2017/07/10
      Vol:
    E100-D No:10
      Page(s):
    2659-2663

    This paper deals with a novel, interesting problem of detecting frauds in comparison-shopping services (CSS). In CSS, there exist frauds who perform excessive clicks on a target item. They aim at making the item look very popular and subsequently ranked high in the search and recommendation results. As a result, frauds may distort the quality of recommendations and searches. We propose an approach of detecting such frauds by analyzing click behaviors of users in CSS. We evaluate the effectiveness of the proposed approach on a real-world clickstream dataset.

  • Efficient Parallel Learning of Hidden Markov Chain Models on SMPs

    Lei LI  Bin FU  Christos FALOUTSOS  

     
    INVITED PAPER

      Vol:
    E93-D No:6
      Page(s):
    1330-1342

    Quad-core cpus have been a common desktop configuration for today's office. The increasing number of processors on a single chip opens new opportunity for parallel computing. Our goal is to make use of the multi-core as well as multi-processor architectures to speed up large-scale data mining algorithms. In this paper, we present a general parallel learning framework, Cut-And-Stitch, for training hidden Markov chain models. Particularly, we propose two model-specific variants, CAS-LDS for learning linear dynamical systems (LDS) and CAS-HMM for learning hidden Markov models (HMM). Our main contribution is a novel method to handle the data dependencies due to the chain structure of hidden variables, so as to parallelize the EM-based parameter learning algorithm. We implement CAS-LDS and CAS-HMM using OpenMP on two supercomputers and a quad-core commercial desktop. The experimental results show that parallel algorithms using Cut-And-Stitch achieve comparable accuracy and almost linear speedups over the traditional serial version.