1-2hit |
This new design uses a low power embedded controller (EC) in cooperation with the BIOS of a notebook (NB) computer, both to accomplish dynamic adjustment and to maintain a required performance level of the battery mode of the notebook. In order to extend the operation time at the battery mode, in general, the notebook computer will directly reduce the clock rate and then reduce the performance. This design can obtain the necessary balance of the performance and the power consumption by using both the EC and the BIOS cooperatively to implement the dynamic control of both the CPU and the GPU frequency to maintain the system performance at a sufficient level for a high speed and high resolution video game. In contrast, in order to maintain a certain notebook performance, in terms of battery life it will be necessary to make some trade-offs.
As the electricity rates during peak hours are higher, this paper proposes a design for an ultrabook to automatically shift the charging period to an off-peak period. In addition, this design sets an upper limit for the battery which thus protects the battery and prevents it from remaining in a continued state of both high temperature and high voltage. This design uses both a low-power embedded controller (EC) and the fuzzy logic controller (FLC) control method as the main control techniques together with real time clock (RTC) ICs. The sensing value of the EC and the presetting of parameters are used to control the conversion of the AC/DC module. This user interface design allows the user to set not only the peak/off-peak period but also the upper use limit of the battery.