1-4hit |
This new design uses a low power embedded controller (EC) in cooperation with the BIOS of a notebook (NB) computer, both to accomplish dynamic adjustment and to maintain a required performance level of the battery mode of the notebook. In order to extend the operation time at the battery mode, in general, the notebook computer will directly reduce the clock rate and then reduce the performance. This design can obtain the necessary balance of the performance and the power consumption by using both the EC and the BIOS cooperatively to implement the dynamic control of both the CPU and the GPU frequency to maintain the system performance at a sufficient level for a high speed and high resolution video game. In contrast, in order to maintain a certain notebook performance, in terms of battery life it will be necessary to make some trade-offs.
As the electricity rates during peak hours are higher, this paper proposes a design for an ultrabook to automatically shift the charging period to an off-peak period. In addition, this design sets an upper limit for the battery which thus protects the battery and prevents it from remaining in a continued state of both high temperature and high voltage. This design uses both a low-power embedded controller (EC) and the fuzzy logic controller (FLC) control method as the main control techniques together with real time clock (RTC) ICs. The sensing value of the EC and the presetting of parameters are used to control the conversion of the AC/DC module. This user interface design allows the user to set not only the peak/off-peak period but also the upper use limit of the battery.
Te HUANG Ying-Wen BAI Po-Yang HSU
Most research projects with respect to energy saving are trying to improve power efficiency and are using software to manage the power systems in the power on mode; but in our design, we modify the original Suspend to RAM mode-S3 state, which is the 3rd system state as defined by the ACPI specification, in order to reduce power consumption. We've redesigned the control circuit to save power while a PC is in the standby mode. First, we re-examine the entire circuit in the standby mode, and clarify which chip is used both to wake up the system and to turn off all unnecessary standby power previously used by the chips. Secondly, we redesign the power sequence and use an additional chip to control the system power supply, to allow a PC's normal system's operation to turn off the unnecessary power control chips. Third, in order to save power supply in the standby mode, we have simplified the multiple remote wake-up mechanism to control the remote boot device. The improvement shows that our design reduced power consumption to 0.21W from the original 0.56W while all the remote wake-up functions are disabled; and consumes 0.42W when using multiple remote wake-up functions. We implement the above modification from the legacy S3 state, and obtain lower power consumption. In order to distinguish the standby states, we name the modified S3 state as Deep S3 state.
Chi-Huang HUNG Ying-Wen BAI Wen-Chung CHANG Ren-Yi TSAI
This paper presents a design of the software and hardware modules of an embedded board with both a sensor and an interface circuit which not only control home light-emitting diode (LED) lighting appliances but also reduce their differences in brightness caused by luminous decay. This design consists of four parts: an automatically adjusted LED driver, environment illumination detection, a wireless remote control unit and an automatic brightness control.