The search functionality is under construction.

Author Search Result

[Author] Cong HAO(2hit)

1-2hit
  • Leakage Power Aware Scheduling in High-Level Synthesis

    Nan WANG  Song CHEN  Cong HAO  Haoran ZHANG  Takeshi YOSHIMURA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E97-A No:4
      Page(s):
    940-951

    In this paper, we address the problem of scheduling operations into control steps with a dual threshold voltage (dual-Vth) technique, under timing and resource constraints. We present a two-stage algorithm for leakage power optimization. In the threshold voltage (Vth) assignment stage, the proposed algorithm first initializes all the operations to high-Vth, and then it iteratively shortens the critical path delay by reassigning the set of operations covering all the critical paths to low-Vth until the timing constraint is met. In the scheduling stage, a modified force-directed scheduling is implemented to schedule operations and to adjust threshold voltage assignments with a consideration of the resource constraints. To eliminate the potential resource constraint violations, the operations' threshold voltage adjustment problem is formulated as a “weighted interval scheduling” problem. The experimental results show that our proposed method performs better in both running time and leakage power reduction compared with MWIS [3].

  • An Efficient Multi-Level Algorithm for 3D-IC TSV Assignment

    Cong HAO  Takeshi YOSHIMURA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E100-A No:3
      Page(s):
    776-784

    Through-silicon via (TSV) assignment problem is one of the key design challenges of 3-D IC which is crucial to the wire length and signal delay. In this work we formulate the 3-D IC TSV assignment as an Integer Minimum Cost Multi Commodity (IMCMC) problem on a IMCMC network, and propose a multi-level algorithm. It coarsens the IMCMC network level by level, applies a rough flow assignment on each level of coarsened graph, and generates only promising edges to reduce the IMCMC network size. Benefiting from the multi-level structure, we propose a mixed single and multi commodity flow method improve the TSV assignment solution quality. Moreover, given a TSV assignment, we propose an extended layer by layer algorithm to further optimize the TSV assignment. The experimental results demonstrate that our multi-level with mixed single and multi commodity flow algorithm achieves not only smaller wire length but also shorter runtime compared to other existing works.