The search functionality is under construction.

Author Search Result

[Author] Daguang GAN(4hit)

1-4hit
  • A Hybrid Approach for Paper Recommendation

    Ying KANG  Aiqin HOU  Zimin ZHAO  Daguang GAN  

     
    PAPER

      Pubricized:
    2021/04/26
      Vol:
    E104-D No:8
      Page(s):
    1222-1231

    Paper recommendation has become an increasingly important yet challenging task due to the rapidly expanding volume and scope of publications in the broad research community. Due to the lack of user profiles in public digital libraries, most existing methods for paper recommendation are through paper similarity measurements based on citations or contents, and still suffer from various performance issues. In this paper, we construct a graphical form of citation relations to identify relevant papers and design a hybrid recommendation model that combines both citation- and content-based approaches to measure paper similarities. Considering that citations at different locations in one article are likely of different significance, we define a concept of citation similarity with varying weights according to the sections of citations. We evaluate the performance of our recommendation method using Spearman correlation on real publication data from public digital libraries such as CiteSeer and Wanfang. Extensive experimental results show that the proposed hybrid method exhibits better performance than state-of-the-art techniques, and achieves 40% higher recommendation accuracy in average in comparison with citation-based approaches.

  • SP-DARTS: Synchronous Progressive Differentiable Neural Architecture Search for Image Classification

    Zimin ZHAO  Ying KANG  Aiqin HOU  Daguang GAN  

     
    PAPER

      Pubricized:
    2021/04/23
      Vol:
    E104-D No:8
      Page(s):
    1232-1238

    Differentiable neural architecture search (DARTS) is now a widely disseminated weight-sharing neural architecture search method and it consists of two stages: search and evaluation. However, the original DARTS suffers from some well-known shortcomings. Firstly, the width and depth of the network, as well as the operation of two stages are discontinuous, which causes a performance collapse. Secondly, DARTS has a high computational overhead. In this paper, we propose a synchronous progressive approach to solve the discontinuity problem for network depth and width and we use the 0-1 loss function to alleviate the discontinuity problem caused by the discretization of operation. The computational overhead is reduced by using the partial channel connection. Besides, we also discuss and propose a solution to the aggregation of skip operations during the search process of DARTS. We conduct extensive experiments on CIFAR-10 and WANFANG datasets, specifically, our approach reduces search time significantly (from 1.5 to 0.1 GPU days) and improves the accuracy of image recognition.

  • Matrix Factorization Based Recommendation Algorithm for Sharing Patent Resource

    Xueqing ZHANG  Xiaoxia LIU  Jun GUO  Wenlei BAI  Daguang GAN  

     
    PAPER

      Pubricized:
    2021/04/26
      Vol:
    E104-D No:8
      Page(s):
    1250-1257

    As scientific and technological resources are experiencing information overload, it is quite expensive to find resources that users are interested in exactly. The personalized recommendation system is a good candidate to solve this problem, but data sparseness and the cold starting problem still prevent the application of the recommendation system. Sparse data affects the quality of the similarity measurement and consequently the quality of the recommender system. In this paper, we propose a matrix factorization recommendation algorithm based on similarity calculation(SCMF), which introduces potential similarity relationships to solve the problem of data sparseness. A penalty factor is adopted in the latent item similarity matrix calculation to capture more real relationships furthermore. We compared our approach with other 6 recommendation algorithms and conducted experiments on 5 public data sets. According to the experimental results, the recommendation precision can improve by 2% to 9% versus the traditional best algorithm. As for sparse data sets, the prediction accuracy can also improve by 0.17% to 18%. Besides, our approach was applied to patent resource exploitation provided by the wanfang patents retrieval system. Experimental results show that our method performs better than commonly used algorithms, especially under the cold starting condition.

  • Collaborative Filtering Auto-Encoders for Technical Patent Recommending

    Wenlei BAI  Jun GUO  Xueqing ZHANG  Baoying LIU  Daguang GAN  

     
    PAPER

      Pubricized:
    2021/04/26
      Vol:
    E104-D No:8
      Page(s):
    1258-1265

    To find the exact items from the massive patent resources for users is a matter of great urgency. Although the recommender systems have shot this problem to a certain extent, there are still some challenging problems, such as tracking user interests and improving the recommendation quality when the rating matrix is extremely sparse. In this paper, we propose a novel method called Collaborative Filtering Auto-Encoder for the top-N recommendation. This method employs Auto-Encoders to extract the item's features, converts a high-dimensional sparse vector into a low-dimensional dense vector, and then uses the dense vector for similarity calculation. At the same time, to make the recommendation list closer to the user's recent interests, we divide the recommendation weight into time-based and recent similarity-based weights. In fact, the proposed method is an improved, item-based collaborative filtering model with more flexible components. Experimental results show that the method consistently outperforms state-of-the-art top-N recommendation methods by a significant margin on standard evaluation metrics.