1-5hit |
Ying KANG Aiqin HOU Zimin ZHAO Daguang GAN
Paper recommendation has become an increasingly important yet challenging task due to the rapidly expanding volume and scope of publications in the broad research community. Due to the lack of user profiles in public digital libraries, most existing methods for paper recommendation are through paper similarity measurements based on citations or contents, and still suffer from various performance issues. In this paper, we construct a graphical form of citation relations to identify relevant papers and design a hybrid recommendation model that combines both citation- and content-based approaches to measure paper similarities. Considering that citations at different locations in one article are likely of different significance, we define a concept of citation similarity with varying weights according to the sections of citations. We evaluate the performance of our recommendation method using Spearman correlation on real publication data from public digital libraries such as CiteSeer and Wanfang. Extensive experimental results show that the proposed hybrid method exhibits better performance than state-of-the-art techniques, and achieves 40% higher recommendation accuracy in average in comparison with citation-based approaches.
Zimin ZHAO Ying KANG Aiqin HOU Daguang GAN
Differentiable neural architecture search (DARTS) is now a widely disseminated weight-sharing neural architecture search method and it consists of two stages: search and evaluation. However, the original DARTS suffers from some well-known shortcomings. Firstly, the width and depth of the network, as well as the operation of two stages are discontinuous, which causes a performance collapse. Secondly, DARTS has a high computational overhead. In this paper, we propose a synchronous progressive approach to solve the discontinuity problem for network depth and width and we use the 0-1 loss function to alleviate the discontinuity problem caused by the discretization of operation. The computational overhead is reduced by using the partial channel connection. Besides, we also discuss and propose a solution to the aggregation of skip operations during the search process of DARTS. We conduct extensive experiments on CIFAR-10 and WANFANG datasets, specifically, our approach reduces search time significantly (from 1.5 to 0.1 GPU days) and improves the accuracy of image recognition.
Bin YAO Lifeng HE Shiying KANG Xiao ZHAO Yuyan CHAO
The Euler number is an important topological property in a binary image, and it can be computed by counting certain bit-quads in the binary image. This paper proposes a further improved bit-quad-based algorithm for computing the Euler number. By scanning image rows two by two and utilizing the information obtained while processing the previous pixels, the number of pixels to be checked for processing a bit-quad can be decreased from 2 to 1.5. Experimental results demonstrated that our proposed algorithm significantly outperforms conventional Euler number computing algorithms.
Ying KANG Cong LIU Ning WANG Dianxi SHI Ning ZHOU Mengmeng LI Yunlong WU
Siamese visual tracking, viewed as a problem of max-similarity matching to the target template, has absorbed increasing attention in computer vision. However, it is a challenge for current Siamese trackers that the demands of balance between accuracy in real-time tracking and robustness in long-time tracking are hard to meet. This work proposes a new Siamese based tracker with a dual-pipeline correlated fusion network (named as ADF-SiamRPN), which consists of one initial template for robust correlation, and the other transient template with the ability of adaptive feature optimal selection for accurate correlation. By the promotion from the learnable correlation-response fusion network afterwards, we are in pursuit of the synthetical improvement of tracking performance. To compare the performance of ADF-SiamRPN with state-of-the-art trackers, we conduct lots of experiments on benchmarks like OTB100, UAV123, VOT2016, VOT2018, GOT-10k, LaSOT and TrackingNet. The experimental results of tracking demonstrate that ADF-SiamRPN outperforms all the compared trackers and achieves the best balance between accuracy and robustness.
Bin YAO Lifeng HE Shiying KANG Xiao ZHAO Yuyan CHAO
The Euler number of a binary image is an important topological property for pattern recognition, image analysis, and computer vision. A famous method for computing the Euler number of a binary image is by counting certain patterns of bit-quads in the image, which has been improved by scanning three rows once to process two bit-quads simultaneously. This paper studies the bit-quad-based Euler number computing problem. We show that for a bit-quad-based Euler number computing algorithm, with the increase of the number of bit-quads being processed simultaneously, on the one hand, the average number of pixels to be checked for processing a bit-quad will decrease in theory, and on the other hand, the length of the codes for implementing the algorithm will increase, which will make the algorithm less efficient in practice. Experimental results on various types of images demonstrated that scanning five rows once and processing four bit-quads simultaneously is the optimal tradeoff, and that the optimal bit-quad-based Euler number computing algorithm is more efficient than other Euler number computing algorithms.