The search functionality is under construction.

Author Search Result

[Author] Mengmeng LI(4hit)

1-4hit
  • Advanced Antlion Optimizer with Discrete Ant Behavior for Feature Selection

    Mengmeng LI  Xiaoguang REN  Yanzhen WANG  Wei QIN  Yi LIU  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/09/04
      Vol:
    E103-D No:12
      Page(s):
    2717-2720

    Feature selection is important for learning algorithms, and it is still an open problem. Antlion optimizer is an excellent nature inspired method, but it doesn't work well for feature selection. This paper proposes a hybrid approach called Ant-Antlion Optimizer which combines advantages of antlion's smart behavior of antlion optimizer and ant's powerful searching movement of ant colony optimization. A mutation operator is also adopted to strengthen exploration ability. Comprehensive experiments by binary classification problems show that the proposed algorithm is superiority to other state-of-art methods on four performance indicators.

  • Multi-Objective Ant Lion Optimizer Based on Time Weight

    Yi LIU  Wei QIN  Jinhui ZHANG  Mengmeng LI  Qibin ZHENG  Jichuan WANG  

     
    LETTER-Artificial Intelligence, Data Mining

      Pubricized:
    2021/03/11
      Vol:
    E104-D No:6
      Page(s):
    901-904

    Multi-objective evolutionary algorithms are widely used in many engineering optimization problems and artificial intelligence applications. Ant lion optimizer is an outstanding evolutionary method, but two issues need to be solved to extend it to the multi-objective optimization field, one is how to update the Pareto archive, and the other is how to choose elite and ant lions from archive. We develop a novel multi-objective variant of ant lion optimizer in this paper. A new measure combining Pareto dominance relation and distance information of individuals is put forward and used to tackle the first issue. The concept of time weight is developed to handle the second problem. Besides, mutation operation is adopted on solutions in middle part of archive to further improve its performance. Eleven functions, other four algorithms and four indicators are taken to evaluate the new method. The results show that proposed algorithm has better performance and lower time complexity.

  • Siamese Visual Tracking with Dual-Pipeline Correlated Fusion Network

    Ying KANG  Cong LIU  Ning WANG  Dianxi SHI  Ning ZHOU  Mengmeng LI  Yunlong WU  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/07/09
      Vol:
    E104-D No:10
      Page(s):
    1702-1711

    Siamese visual tracking, viewed as a problem of max-similarity matching to the target template, has absorbed increasing attention in computer vision. However, it is a challenge for current Siamese trackers that the demands of balance between accuracy in real-time tracking and robustness in long-time tracking are hard to meet. This work proposes a new Siamese based tracker with a dual-pipeline correlated fusion network (named as ADF-SiamRPN), which consists of one initial template for robust correlation, and the other transient template with the ability of adaptive feature optimal selection for accurate correlation. By the promotion from the learnable correlation-response fusion network afterwards, we are in pursuit of the synthetical improvement of tracking performance. To compare the performance of ADF-SiamRPN with state-of-the-art trackers, we conduct lots of experiments on benchmarks like OTB100, UAV123, VOT2016, VOT2018, GOT-10k, LaSOT and TrackingNet. The experimental results of tracking demonstrate that ADF-SiamRPN outperforms all the compared trackers and achieves the best balance between accuracy and robustness.

  • An Interpretable Feature Selection Based on Particle Swarm Optimization

    Yi LIU  Wei QIN  Qibin ZHENG  Gensong LI  Mengmeng LI  

     
    LETTER-Pattern Recognition

      Pubricized:
    2022/05/09
      Vol:
    E105-D No:8
      Page(s):
    1495-1500

    Feature selection based on particle swarm optimization is often employed for promoting the performance of artificial intelligence algorithms. However, its interpretability has been lacking of concrete research. Improving the stability of the feature selection method is a way to effectively improve its interpretability. A novel feature selection approach named Interpretable Particle Swarm Optimization is developed in this paper. It uses four data perturbation ways and three filter feature selection methods to obtain stable feature subsets, and adopts Fuch map to convert them to initial particles. Besides, it employs similarity mutation strategy, which applies Tanimoto distance to choose the nearest 1/3 individuals to the previous particles to implement mutation. Eleven representative algorithms and four typical datasets are taken to make a comprehensive comparison with our proposed approach. Accuracy, F1, precision and recall rate indicators are used as classification measures, and extension of Kuncheva indicator is employed as the stability measure. Experiments show that our method has a better interpretability than the compared evolutionary algorithms. Furthermore, the results of classification measures demonstrate that the proposed approach has an excellent comprehensive classification performance.