The search functionality is under construction.

Author Search Result

[Author] Daisuke KUNIMATSU(2hit)

1-2hit
  • Wide-Band Dispersion Compensation for 1000-km Single-Mode Fiber by Midway Spectral Inversion Using Cascaded Nonlinearities in LiNbO3 Waveguide

    Xiaomin WANG  Daisuke KUNIMATSU  Tatsushi HASEGAWA  Akira SUZUKI  

     
    LETTER

      Vol:
    E87-C No:7
      Page(s):
    1097-1099

    We demonstrate the wide-band (> 25-nm) long-distance (> 1000-km) chromatic dispersion compensation by midway spectral inversion (MSI) using a periodically-polled LiNbO3 device. In order to achieve a flat zero net dispersion, the fourth order dispersion of the single-mode fibers is canceled by MSI, while the third order dispersion is compensated for by the negative slope dispersion compensation fiber (NS-DCF). The second order dispersion is canceled out by both. The long distance propagation is realized by a double recirculation-loop system. A very flat zero dispersion is measured for the first time for over 1000-km single-mode fiber propagation with MSI dispersion compensation.

  • Stabilization and Timing Jitter Reduction of 160 GHz Colliding-Pulse Mode-Locked Laser Diode by Subharmonic-Frequency Optical Pulse Injection

    Shin ARAHIRA  Yukio KATOH  Daisuke KUNIMATSU  Yoh OGAWA  

     
    PAPER-High-Speed Optical Devices

      Vol:
    E83-C No:6
      Page(s):
    966-973

    A 160 GHz colliding-pulse mode-locked laser diode (CPM-LD) was stabilized by injection of a stable master laser pulse train repeated at a 16th-subharmonic-frequency (9.873 GHz) of the CPM-LD's mode-locking frequency. Synchroscan steak camera measurements revealed a clear pulse train with 16-times repetition frequency of the master laser pulse train for the stabilized CPM-LD output, indicating that CPM-LD output was synchronized to the master laser and that the timing jitter was also reduced. The timing jitter of the stabilized CPM-LD was quantitatively evaluated by an all-optical down converting technique using the nonlinearity of optical fiber. This technique is simple and has a wider bandwidth in comparison to a conventional technique, making it possible to accurately measure the phase noise of ultrafast optical pulse train when its repetition frequency exceeds 100 GHz. The electrical power spectra measurements indicated that the CPM-LD's mode-locking frequency was exactly locked by the injection of the master laser pulse train and that the timing jitter decreased as the injection power increased. The timing jitter was reduced from 2.2 ps in free running operation to 0.26 ps at an injection power of 57 mW, comparable to that of the master laser (0.21 ps).