1-7hit |
Wenmei ZHANG Xiaowei SUN Junfa MAO Rong QIAN Dan ZHANG
A new type of compact one dimension (1-D) microstrip photonic bandgap (PBG) structure for filter is presented. A miniature semiconductor-based structure band-stop filter with four cells is simulated, fabricated, and measured. Agreement between the experimental and simulation results has been achieved. The filter with four proposed PBG structure exhibits deep (about -60 dB) and steep (about 40 dB/GHz) stop-band characteristics. It also has less loss and ripples in the pass-band. The period of the PBG lattice is about 0.2 λe (λe, guiding wavelength at the center frequency of stop-band), or 0.068 λ0 (λ0 wavelength in air), and the filter is very compact and much easier for fabrication and realization in MIC and MMIC.
Qian ZHANG Yuhan DONG Xuedan ZHANG Benzhou JIN Xiaokang LIN
The traditional selection cooperation scheme selects the relay with best instantaneous receive signal-to-noise ratio to forward the message and achieves good outage performance, which may however cause poor fairness among relays. In this letter, we propose two practical selection cooperation schemes in Decode-and-Forward (DF) fashion to improve the fairness of relay selection. Numerical results suggest that both of the proposed schemes can achieve fairness close to the strict fairness scheme without outage performance deterioration. It is also validated that these schemes have lower complexities than traditional ones and therefore are practical for real networks.
Xuedan ZHANG Jun HONG Lin ZHANG Xiuming SHAN Victor O. K. LI
This paper addresses the issue of transmission scheduling in wireless ad hoc networks. We propose a Time Division Multiple Access (TDMA) scheduling scheme based on edge coloring and probabilistic assignment, called CP-TDMA. We categorize the conflicts suffered by wireless links into two types: explicit conflicts and implicit conflicts, and utilize two different strategies to deal with them. Explicit conflicts are avoided completely by a simple distributed edge-coloring algorithm µ-M, and implicit conflicts are minimized by applying probabilistic time slot assignments to links. We evaluate CP-TDMA analytically and numerically, and find that CP-TDMA, which requires only local information exhibits a better performance than previous work.
The propagation characteristics of the leaky TE mode in a two-dimensional photonic crystal waveguide is analyzed using the Fourier series expansion method combined with the Chew's perfectly matched layer (PML). The complex propagation constant and mode field profiles are numerically tested in detail. It is shown that the leakage phenomena can be well modeled by choosing the PML parameters in proper range.
Junwei BAO Dazhuan XU Hao LUO Ruidan ZHANG Fei WANG
A novel compress-and-forward (CF) system based on multi-relay network is proposed. In this system, two networks are linked, wherein one is a sensor network connecting the analog source and the relays, and the other is a communication network between the relays and the destination. At several parallel relay nodes, the analog signals are transformed into digital signals after quantization and encoding and then the digital signals are transmitted to the destination. Based on the Chief Executive Officer (CEO) theory, we calculate the minimum transmission rate of every source-relay link and we propose a system model by combining sensor network with communication network according to Shannon channel capacity theory. Furthermore, we obtain the best possible system performance under system power constraint, which is measured by signal-to-noise ratio (SNR) rather than bit error rate (BER). Numerical simulation results show that the proposed CF outperforms the traditional amplify-and-forward (AF) system in the performance versus SNR.
Jiang WEI Lige ZHANG Zhenbiao LI Dandan ZHANG Xiaoping BAI Makoto HASEGAWA Qingcheng ZHU
In order to realize better understanding of influential order sequences of surrounding atmospheres on break arc durations of electrical contacts in DC load conditions, a quantitative mathematical model, which aims to indicate dependences of break arc durations on several gas parameters such as molecular mass, viscosity, specific heat capacity, thermal conductivity, electro-negativity, and ionization potential, was analyzed. Break arc durations of AgCdO contact pairs were measured in several kinds of surrounding atmospheres (N2, Ar, He, air, O2 and CO2) under different DC voltage and current conditions, and data fitting processes were conducted. As a result, a candidate mathematical model was established, which could indicate possible influential order sequences of surrounding atmospheres on break arc durations in the range of the tested conditions.
Xingyang CHEN Lin ZHANG Yuhan DONG Xuedan ZHANG Yong REN
This paper introduces a random selection cooperation scheme that takes the Decode-and-Forward (DF) approach to solve the unfairness problem in selection cooperation. Compared to previous work which obtained fairness but introduced performance loss, the proposed scheme guarantees fairness without performance loss. Its essence is to randomly select from the relays that can ensure the successful communication between the source and the destination, rather than to select the best relay. Both a theoretical analysis and simulation results confirm that the proposed scheme could achieve fairness and introduce no performance loss. We also discuss the conditions under which the proposed scheme is practical to implement.