The search functionality is under construction.

Author Search Result

[Author] Junfa MAO(7hit)

1-7hit
  • Capacitance Extraction of Three-Dimensional Interconnects Using Element-by-Element Finite Element Method (EBE-FEM) and Preconditioned Conjugate Gradient (PCG) Technique

    Jianfeng XU  Hong LI  Wen-Yan YIN  Junfa MAO  Le-Wei LI  

     
    PAPER-Integrated Electronics

      Vol:
    E90-C No:1
      Page(s):
    179-188

    The element-by-element finite element method (EBE-FEM) combined with the preconditioned conjugate gradient (PCG) technique is employed in this paper to calculate the coupling capacitances of multi-level high-density three-dimensional interconnects (3DIs). All capacitive coupling 3DIs can be captured, with the effects of all geometric and physical parameters taken into account. It is numerically demonstrated that with this hybrid method in the extraction of capacitances, an effective and accurate convergent solution to the Laplace equation can be obtained, with less memory and CPU time required, as compared to the results obtained by using the commercial FEM software of either MAXWELL 3D or ANSYS.

  • Thermal Effect Simulation of GaN HFETs under CW and Pulsed Operation

    Jianfeng XU  Wen-Yan YIN  Junfa MAO  Le-Wei LI  

     
    LETTER-Electronic Components

      Vol:
    E90-C No:1
      Page(s):
    204-207

    In this paper, the thermal characteristic of the GaN HFETs has been analyzed using the hybrid finite element method (FEM). Both the steady and transient state thermal operations are quantitatively studied with the effects of temperature-dependent thermal conductivities of GaN and the substrate materials properly treated. The temperature distribution and the maximum temperatures of the HFETs operated under excitations of continuous-waves (CW) and pulsed-waves (PW) including double exponential shape PW such as electromagnetic pulse (EMP) and ultra-wideband (UWB) signal are studied and compared.

  • New Compact 1-D PBG Microstrip Structure with Steeper Stop-Band Characteristics

    Wenmei ZHANG  Xiaowei SUN  Junfa MAO  Rong QIAN  Dan ZHANG  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E86-C No:9
      Page(s):
    1894-1897

    A new type of compact one dimension (1-D) microstrip photonic bandgap (PBG) structure for filter is presented. A miniature semiconductor-based structure band-stop filter with four cells is simulated, fabricated, and measured. Agreement between the experimental and simulation results has been achieved. The filter with four proposed PBG structure exhibits deep (about -60 dB) and steep (about 40 dB/GHz) stop-band characteristics. It also has less loss and ripples in the pass-band. The period of the PBG lattice is about 0.2 λe (λe, guiding wavelength at the center frequency of stop-band), or 0.068 λ0 (λ0 wavelength in air), and the filter is very compact and much easier for fabrication and realization in MIC and MMIC.

  • Timing-Driven Placement Based on Path Topology Analysis

    Feng CHENG  Junfa MAO  Xiaochun LI  

     
    LETTER-VLSI Design Technology and CAD

      Vol:
    E88-A No:8
      Page(s):
    2227-2230

    A timing-driven placement algorithm based on path topology analysis is presented. The optimization for path delay is transformed into cell location optimization. The algorithm pays much attention on path topologies and applies an effective force directed method to find cell target locations. Total wire length optimization is combined with the timing-driven placement algorithm. MCNC (Microelectronics Centre of North-Carolina) standard cell benchmarks are experimented and results show that our timing-driven placement algorithm can make the longest path delay improve up to 13% compared with wirelength driven placement.

  • A Novel Model for Computing the Effective Capacitance of CMOS Gates with Interconnect Loads

    Zhangcai HUANG  Atsushi KUROKAWA  Yasuaki INOUE  Junfa MAO  

     
    PAPER

      Vol:
    E88-A No:10
      Page(s):
    2562-2569

    In deep submicron designs, the interconnect wires play a major role in the timing behavior of logic gates. The effective capacitance Ceff concept is usually used to calculate the delay of gate with interconnect loads. In this paper, we present a new method of Integration Approximation to calculate Ceff. In this new method, the complicated nonlinear gate output is assumed as a piecewise linear (PWL) waveform. A new model is then derived to compute the value of Ceff. The introduction of Integration Approximation results in Ceff being insensitive to output waveform shape. Therefore, the new method can be applied to various output waveforms of CMOS gates with RC-π loads. Experimental results show a significant improvement in accuracy.

  • Double-Image Green's Function Method for CMOS Process Oriented Transmission Lines

    Wenliang DAI  Zhengfan LI  Junfa MAO  

     
    LETTER-Microwaves, Millimeter-Waves

      Vol:
    E86-C No:12
      Page(s):
    2504-2507

    A novel double-image Green's function approach is proposed to compute the frequency- dependent capacitance and conductance for the general CMOS oriented transmission lines with one protective layer. The ε-algorithm of Pade approximation is adopted to reduce the time for establishing coefficient matrix in this letter. The parameters gained from this new approach are shown to be in good agreement with the data obtained by the full-wave method and the total charge Green's function method.

  • Theory and Application of Compact Microstrip PBG Cell for Wide Stop-Band Filter

    Wenmei ZHANG  Xiaowei SUN  Junfa MAO  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E88-C No:6
      Page(s):
    1315-1321

    Based on the periodical-loaded principle, a new wider stop-band filter is presented. The design equations are provided, the validity of which is proved by the measured results. Compared with loaded stub of length 1/4λg, the improved T-shape stub can change admittance paralleled with microstrip line and widen the band width of the band-stop filter. The size of the filter loaded by one side can be reduced by 2/3. The stop-band filter loaded by one side and two sides are simulated and realized. The filter loaded by two sides can achieve very wide stop-band. In addition, the stop-band of the new type of filter is deep and steep.