The search functionality is under construction.

Author Search Result

[Author] Atsushi KUROKAWA(22hit)

1-20hit(22hit)

  • A Novel Model for Computing the Effective Capacitance of CMOS Gates with Interconnect Loads

    Zhangcai HUANG  Atsushi KUROKAWA  Yasuaki INOUE  Junfa MAO  

     
    PAPER

      Vol:
    E88-A No:10
      Page(s):
    2562-2569

    In deep submicron designs, the interconnect wires play a major role in the timing behavior of logic gates. The effective capacitance Ceff concept is usually used to calculate the delay of gate with interconnect loads. In this paper, we present a new method of Integration Approximation to calculate Ceff. In this new method, the complicated nonlinear gate output is assumed as a piecewise linear (PWL) waveform. A new model is then derived to compute the value of Ceff. The introduction of Integration Approximation results in Ceff being insensitive to output waveform shape. Therefore, the new method can be applied to various output waveforms of CMOS gates with RC-π loads. Experimental results show a significant improvement in accuracy.

  • An Approach for Reducing Leakage Current Variation due to Manufacturing Variability

    Tsuyoshi SAKATA  Takaaki OKUMURA  Atsushi KUROKAWA  Hidenari NAKASHIMA  Hiroo MASUDA  Takashi SATO  Masanori HASHIMOTO  Koutaro HACHIYA  Katsuhiro FURUKAWA  Masakazu TANAKA  Hiroshi TAKAFUJI  Toshiki KANAMOTO  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E92-A No:12
      Page(s):
    3016-3023

    Leakage current is an important qualitative metric of LSI (Large Scale Integrated circuit). In this paper, we focus on reduction of leakage current variation under the process variation. Firstly, we derive a set of quadratic equations to evaluate delay and leakage current under the process variation. Using these equations, we discuss the cases of varying leakage current without degrading delay distribution and propose a procedure to reduce the leakage current variations. From the experiments, we show the proposed method effectively reduces the leakage current variation up to 50% at 90 percentile point of the distribution compared with the conventional design approach.

  • An Effective Model of the Overshooting Effect for Multiple-Input Gates in Nanometer Technologies

    Li DING  Zhangcai HUANG  Atsushi KUROKAWA  Jing WANG  Yasuaki INOUE  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E97-A No:5
      Page(s):
    1059-1074

    With the scaling of CMOS technology into the nanometer regime, the overshooting effect is more and more obvious and has a significant influence to gate delay and power consumption. Recently, researchers have already proposed the overshooting effect models for an inverter. However, the accurate overshooting effect model for multiple-input gates is seldom presented and the existing technology to reduce a multiple-input gate to an inverter is not useful when modeling the overshooting effect for multiple-input gates. Therefore, modeling the overshooting effect for multiple-input gates is proposed in this paper. Firstly, a formula-based model is presented for the overshooting time of 2-input NOR gate. Then, more complicated methods are given to calculate the overshooting time of 3-input NOR gate and other multiple-input gates. The proposed model is verified to have a good agreement, within 3.4% error margin, compared with SPICE simulation results using CMOS 32nm PTM model.

  • Signal Propagation Delay Model in Vertically Stacked Chips

    Nanako NIIOKA  Masayuki WATANABE  Masa-aki FUKASE  Masashi IMAI  Atsushi KUROKAWA  

     
    PAPER-Device and Circuit Modeling and Analysis

      Vol:
    E98-A No:12
      Page(s):
    2614-2624

    To design high quality three-dimensional integrated circuits (3-D ICs), the effect of process and design parameters on delay must be adequately understood. This paper presents an electrical circuit model of an entire structure in through silicon via (TSV) based 3-D ICs with a new equation for on-chip interconnect capacitance and then proposes an effective model for evaluating signal propagation delay in vertically stacked chips. All electrical parameter values can be calculated by the closed-form equations without a field solver. The delay model is constructed with the first- or second-order function of each parameter to the delay obtained from a typical structure. The results obtained by on-chip interconnect capacitance equations and delay model are in excellent agreement with those by a field solver and circuit simulator, respectively. We also show that the model is very useful for evaluating effects of the process and design parameters on vertical signal propagation delay such as the sensitivity and variability analysis.

  • Second-Order Polynomial Expressions for On-Chip Interconnect Capacitance

    Atsushi KUROKAWA  Masanori HASHIMOTO  Akira KASEBE  Zhangcai HUANG  Yun YANG  Yasuaki INOUE  Ryosuke INAGAKI  Hiroo MASUDA  

     
    PAPER-Interconnect

      Vol:
    E88-A No:12
      Page(s):
    3453-3462

    Simple closed-form expressions for efficiently calculating on-chip interconnect capacitances are presented. The formulas are expressed with second-order polynomial functions which do not include exponential functions. The runtime of the proposed formulas is about 2-10 times faster than those of existing formulas. The root mean square (RMS) errors of the proposed formulas are within 1.5%, 1.3%, 3.1%, and 4.6% of the results obtained by a field solver for structures with one line above a ground plane, one line between ground planes, three lines above a ground plane, and three lines between ground planes, respectively. The proposed formulas are also superior in accuracy to existing formulas.

  • Determination of Interconnect Structural Parameters for Best- and Worst-Case Delays

    Atsushi KUROKAWA  Hiroo MASUDA  Junko FUJII  Toshinori INOSHITA  Akira KASEBE  Zhangcai HUANG  Yasuaki INOUE  

     
    PAPER

      Vol:
    E89-A No:4
      Page(s):
    856-864

    In general, a corner model with best- and worst-case delay conditions is used in static timing analysis (STA). The best- and worst-case delays of a stage are defined as the fastest and slowest delays from a cell input to the next cell input. In this paper, we present a methodology for determining the parameters that yield the best- and worst-case delays when interconnect structural parameters have the minimum and maximum values with process variations. We also present analysis results of our circuit model using the methodology. The min and max conditions for the time constant are found to be (+Δw, +Δt, +Δh) & (-Δw, -Δt, -Δh), respectively. Here, +Δ or -Δ means the max or min corner value of each parameter variation, where w is the width, t is the interconnect thickness, and h is the height. Best and worst conditions for delay time are as follows: 1) given a circuit with an optimum driver, dense interconnects, and small branch capacitance, the best and worst conditions are respectively (-Δw, +Δt, +Δh) & (+Δw, +Δt, -Δh), 2) given driver and/or via resistances that are higher than the interconnect resistance, dense interconnects, and small branch capacitance, they are (-Δw, -Δt, +Δh) & (+Δw, +Δt, -Δh), and 3) for other conditions, they are (+Δw, +Δt, +Δh) & (-Δw, -Δt, -Δh). Moreover, if there must be only one condition each for the best- and worst-case delays, they are (+Δw, +Δt, +Δh) & (-Δw, -Δt, -Δh).

  • A Non-Iterative Method for Calculating the Effective Capacitance of CMOS Gates with Interconnect Load Effect

    Minglu JIANG  Zhangcai HUANG  Atsushi KUROKAWA  Qiang LI  Bin LIN  Yasuaki INOUE  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E94-A No:5
      Page(s):
    1201-1209

    Gate delay evaluation is always a vital concern for high-performance digital VLSI designs. As the feature size of VLSIs decreases to the nano-meter region, the work to obtain an accurate gate delay value becomes more difficult and time consuming than ever. The conventional methods usually use iterative algorithms to ensure the accuracy of the effective capacitance Ceff, which is usually used to compute the gate delay with interconnect loads and to capture the output signal shape of the real gate response. Accordingly, the efficiency is sacrificed. In this paper, an accurate and efficient approach is proposed for gate delay estimation. With the linear relationship of gate output time points and Ceff, a polynomial approximation is used to make the nonlinear effective capacitance equation be solved without iterative method. Compared to the conventional methods, the proposed method improves the efficiency of gate delay calculation. Meanwhile, experimental results show that the proposed method is in good agreement with SPICE results and the average error is 2.8%.

  • Prevention in a Chip of EMI Noise Caused by X'tal Oscillator

    Atsushi KUROKAWA  Hiroshi FUJITA  Tetsuya IBE  

     
    PAPER

      Vol:
    E91-A No:4
      Page(s):
    1077-1083

    Developing LSIs with EMI suppression, particularly for use in automobiles, is important for improving warranties and customer acquisition. First, we describe that the measures against EMI noise caused by a X'tal oscillator are important. Next, we present a practical method for analyzing the noise with models of the inside and outside of a chip. In addition, we propose a within-chip measure against EMI noise that takes chip cost into account. The noise is suppressed by using an appropriate resistance and capacitance on the power line. Simulation results demonstrated the method's effectiveness in suppressing noise.

  • Impact of Intrinsic Parasitic Extraction Errors on Timing and Noise Estimation

    Toshiki KANAMOTO  Shigekiyo AKUTSU  Tamiyo NAKABAYASHI  Takahiro ICHINOMIYA  Koutaro HACHIYA  Atsushi KUROKAWA  Hiroshi ISHIKAWA  Sakae MUROMOTO  Hiroyuki KOBAYASHI  Masanori HASHIMOTO  

     
    LETTER-Interconnect

      Vol:
    E89-A No:12
      Page(s):
    3666-3670

    In this letter, we discuss the impact of intrinsic error in parasitic capacitance extraction programs which are commonly used in today's SoC design flows. Most of the extraction programs use pattern-matching methods which introduces an improvable error factor due to the pattern interpolation, and an intrinsically inescapable error factor from the difference of boundary conditions in the electro-magnetic field solver. Here, we study impact of the intrinsic error on timing and crosstalk noise estimation. We experimentally show that the resulting delay and noise estimation errors show a scatter which is normally distributed. Values of the standard deviations will help designers consider the intrinsic error compared with other variation factors.

  • Improvement in Computational Accuracy of Output Transition Time Variation Considering Threshold Voltage Variations

    Takaaki OKUMURA  Atsushi KUROKAWA  Hiroo MASUDA  Toshiki KANAMOTO  Masanori HASHIMOTO  Hiroshi TAKAFUJI  Hidenari NAKASHIMA  Nobuto ONO  Tsuyoshi SAKATA  Takashi SATO  

     
    PAPER

      Vol:
    E92-A No:4
      Page(s):
    990-997

    Process variation is becoming a primal concern in timing closure of LSI (Large Scale Integrated Circuit) with the progress of process technology scaling. To overcome this problem, SSTA (Statistical Static Timing Analysis) has been intensively studied since it is expected to be one of the most efficient ways for performance estimation. In this paper, we study variation of output transition-time. We firstly clarify that the transition-time variation can not be expressed accurately by a conventional first-order sensitivity-based approach in the case that the input transition-time is slow and the output load is small. We secondly reveal quadratic dependence of the output transition-time to operating margin in voltage. We finally propose a procedure through which the estimation of output transition-time becomes continuously accurate in wide range of input transition-time and output load combinations.

  • Approximation Formula Approach for the Efficient Extraction of On-Chip Mutual Inductances

    Atsushi KUROKAWA  Takashi SATO  Hiroo MASUDA  

     
    PAPER-Parasitics and Noise

      Vol:
    E86-A No:12
      Page(s):
    2933-2941

    We present a new and efficient approach for extracting on-chip mutual inductances of VLSI interconnects by applying approximation formulae. The equations are based on the assumption of filaments or bars of finite width and zero thickness and are derived through Taylor's expansion of the exact formula for mutual inductance between filaments. Despite the assumption of uniform current density in each of the bars, the model is sufficiently accurate for the interconnections of current and future LSIs because the skin and proximity effects do not affect most wires. Expression of the equations in polynomial form provides a balance between accuracy and computational complexity. These equations are mapped according to the geometric structures for which they are most suitable in minimizing the runtime of inductance calculation while retaining the required accuracy. Within geometrical constraints, the wires are of arbitrary specification. Results of a comprehensive evaluation based on the ITRS-specified global wiring structure for 2003 shows that the inductance values were extracted by using the proposed approach, and they were within several percent of the values obtained by using commercial three-dimensional (3-D) field solvers. The efficiency of the proposed approach is also demonstrated by extraction from a real layout design that has 300-k interconnecting segments.

  • Efficient Large Scale Integration Power/Ground Network Optimization Based on Grid Genetic Algorithm

    Yun YANG  Atsushi KUROKAWA  Yasuaki INOUE  Wenqing ZHAO  

     
    PAPER-Power/Ground Network

      Vol:
    E88-A No:12
      Page(s):
    3412-3420

    In this paper we propose a novel and efficient method for the optimization of the power/ground (P/G) network in VLSI circuit layouts with reliability constraints. Previous algorithms in the P/G network sizing used the sequence-of-linear-programming (SLP) algorithm to solve the nonlinear optimization problems. However the transformation from nonlinear network to linear subnetwork is not optimal enough. Our new method is inspired by the biological evolution and use the grid-genetic-algorithm (GGA) to solve the optimization problem. Experimental results show that new P/G network sizes are smaller than previous algorithms, as the fittest survival in the nature. Another significant advance is that GGA method can be applied for all P/G network problems because it can get the results directly no matter whether these problems are linear or not. Thus GGA can be adopted in the transient behavior of the P/G network sizing in the future, which recently faces on the obstacles in the solution of the complex nonlinear problems.

  • Accurate Method for Calculating the Effective Capacitance with RC Loads Based on the Thevenin Model

    Minglu JIANG  Zhangcai HUANG  Atsushi KUROKAWA  Shuai FANG  Yasuaki INOUE  

     
    PAPER-Nonlinear Problems

      Vol:
    E92-A No:10
      Page(s):
    2531-2539

    In deep submicron designs, predicting gate delays with interconnect load is a noteworthy work for Static Timing Analysis (STA). The effective capacitance Ceff concept and the Thevenin model that replaces the gate with a linear resistor and a voltage source are usually used to calculate the delay of gate with interconnect load. In conventional methods, it is not considered that the charges transferred into interconnect load and Ceff in the Thevenin model are not equal. The charge difference between interconnect load and Ceff has the large influence to the accuracy of computing Ceff. In this paper, an advanced effective capacitance model is proposed to consider the above problem in the Thevenin model, where the influence of the charge difference is modeled as one part of the effective capacitance to compute the gate delay. Experimental results show a significant improvement in accuracy when the charge difference between interconnect load and Ceff is considered.

  • Simple Analytical Formulas for Estimating IR-Drops in an Early Design Stage

    Kazuyuki OOYA  Yuji TAKASHIMA  Atsushi KUROKAWA  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E93-A No:9
      Page(s):
    1585-1593

    In an early design stage of LSI designing, finding out the proper parameters for power planning is important from the viewpoint of cost minimization. In this paper, we present simple analytical formulas which are used to obtain the initial parameters close to the proper power distribution networks in the early design stage. The formulas for estimating static and pseudo-dynamic voltage drops (IR-drops) are derived by the response surface method (RSM). By making the formulas once, they can be used for the general power planning for the power-grid style in any process technology.

  • Impact of Self-Heating in Wire Interconnection on Timing

    Toshiki KANAMOTO  Takaaki OKUMURA  Katsuhiro FURUKAWA  Hiroshi TAKAFUJI  Atsushi KUROKAWA  Koutaro HACHIYA  Tsuyoshi SAKATA  Masakazu TANAKA  Hidenari NAKASHIMA  Hiroo MASUDA  Takashi SATO  Masanori HASHIMOTO  

     
    BRIEF PAPER

      Vol:
    E93-C No:3
      Page(s):
    388-392

    This paper evaluates impact of self-heating in wire interconnection on signal propagation delay in an upcoming 32 nm process technology, using practical physical parameters. This paper examines a 64-bit data transmission model as one of the most heating cases. Experimental results show that the maximum wire temperature increase due to the self-heating appears in the case where the ratio of interconnect delay becomes largest compared to the driver delay. However, even in the most significant case which induces the maximum temperature rise of 11.0, the corresponding increase in the wire resistance is 1.99% and the resulting delay increase is only 1.15%, as for the assumed 32 nm process. A part of the impact reduction of wire self-heating on timing comes from the size-effect of nano-scale wires.

  • Modeling the Effective Capacitance of Interconnect Loads for Predicting CMOS Gate Slew

    Zhangcai HUANG  Atsushi KUROKAWA  Jun PAN  Yasuaki INOUE  

     
    PAPER-Prediction and Analysis

      Vol:
    E88-A No:12
      Page(s):
    3367-3374

    In deep submicron designs, predicting gate slews and delays for interconnect loads is vitally important for Static Timing Analysis (STA). The effective capacitance Ceff concept is usually used to calculate the gate delay of interconnect loads. Many Ceff algorithms have been proposed to compute gate delay of interconnect loads. However, less work has been done to develop a Ceff algorithm which can accurately predict gate slew. In this paper, we propose a novel method for calculating the Ceff of interconnect load for gate slew. We firstly establish a new expression for Ceff in 0.8Vdd point. Then the Integration Approximation method is used to calculate the value of Ceff in 0.8Vdd point. In this method, the integration of a complicated nonlinear gate output is approximated with that of a piecewise linear waveform. Based on the value of Ceff in 0.8Vdd point, Ceff of interconnect load for gate slew is obtained. The simulation results demonstrate a significant improvement in accuracy.

  • Formula-Based Method for Capacitance Extraction of Interconnects with Dummy Fills

    Atsushi KUROKAWA  Akira KASEBE  Toshiki KANAMOTO  Yun YANG  Zhangcai HUANG  Yasuaki INOUE  Hiroo MASUDA  

     
    PAPER

      Vol:
    E89-A No:4
      Page(s):
    847-855

    In advanced ASIC/SoC physical designs, interconnect parasitic extraction is one of the important factors to determine the accuracy of timing analysis. We present a formula-based method to efficiently extract interconnect capacitances of interconnects with dummy fills for VLSI designs. The whole flow is as follows: 1) in each process, obtain capacitances per unit length using a 3-D field solver and then create formulas, and 2) in the actual design phase, execute a well-known 2.5-D capacitance extraction. Our results indicated that accuracies of the proposed formulas were almost within 3% error. The proposed formula-based method can extract interconnect capacitances with high accuracy for VLSI circuits. Moreover, we present formulas to evaluate the effect of dummy fills on interconnect capacitances. These can be useful for determining design guidelines, such as metal density before the actual design, and for analyzing the effect of each structural parameter during the design phase.

  • Modeling the Influence of Input-to-Output Coupling Capacitance on CMOS Inverter Delay

    Zhangcai HUANG  Atsushi KUROKAWA  Yun YANG  Hong YU  Yasuaki INOUE  

     
    PAPER

      Vol:
    E89-A No:4
      Page(s):
    840-846

    The modeling of gate delays has always been one of the most difficult and market-sensitive works. In submicron designs, the second-order effects such as the input-to-output coupling capacitance have a significant influence on gate delay as shown in this paper. However, the accurate analysis of the input-to-output coupling capacitance effect has not been presented in previous research. In this paper, an analytical model for the influence of the input-to-output coupling capacitance on CMOS inverter delay is proposed, in which a novel algorithm for computing overshooting time is given. Experimental results show good agreement with Spice simulations.

  • Fast On-Chip Inductance Extraction of VLSI Including Angled Interconnects

    Atsushi KUROKAWA  Kotaro HACHIYA  Takashi SATO  Kazuya TOKUMASU  Hiroo MASUDA  

     
    LETTER

      Vol:
    E86-A No:4
      Page(s):
    841-845

    A formula-based approach for extracting the inductance of on-chip VLSI interconnections is presented. All of the formulae have been previously proposed and are well-known, but the degrees of accuracy they provide in this context have not previously been examined. The accuracy of the equations for a 0.1 µm technology node is evaluated through comparison of their results with those of 3-D field solvers. Comprehensive evaluation has proven that the maximum relative error of self- and mutual inductances as calculated by the formulae are less than 5% for parallel wires and less than 13% for angled wires, when wire width is limited to no more than 10 times the minimum. When applied to a realistic example with 43 wire segments, a program using the formula-based approach extracts values more than 60 times faster than a 3-D field solver.

  • Efficient Dummy Filling Methods to Reduce Interconnect Capacitance and Number of Dummy Metal Fills

    Atsushi KUROKAWA  Toshiki KANAMOTO  Tetsuya IBE  Akira KASEBE  Wei Fong CHANG   Tetsuro KAGE  Yasuaki INOUE  Hiroo MASUDA  

     
    PAPER-Interconnect

      Vol:
    E88-A No:12
      Page(s):
    3471-3478

    Floating dummy metal fills inserted for planarization of multi-dielectric layers have created serious problems because of increased interconnect capacitance and the enormous number of fills. We present new dummy filling methods to reduce the interconnect capacitance and the number of dummy metal fills needed. These techniques include three ways of filling: 1) improved floating square fills, 2) floating parallel lines, and 3) floating perpendicular lines (with spacing between dummy metal fills above and below signal lines). We also present efficient formulas for estimating the appropriate spacing and number of fills. In our experiments, the capacitance increase using the conventional regular square method was 13.1%, while that using the methods of improved square fills, extended parallel lines, and perpendicular lines were 2.7%, 2.4%, and 1.0%, respectively. Moreover, the number of necessary dummy metal fills can be reduced by two orders of magnitude through use of the parallel line method.

1-20hit(22hit)