The search functionality is under construction.

Author Search Result

[Author] Bin LIN(11hit)

1-11hit
  • Computing the Ate Pairing on Elliptic Curves with Embedding Degree k=9

    Xibin LIN  Chang-An ZHAO  Fangguo ZHANG  Yanming WANG  

     
    PAPER

      Vol:
    E91-A No:9
      Page(s):
    2387-2393

    For AES 128 security level there are several natural choices for pairing-friendly elliptic curves. In particular, as we will explain, one might choose curves with k=9 or curves with k=12. The case k=9 has not been studied in the literature, and so it is not clear how efficiently pairings can be computed in that case. In this paper, we present efficient methods for the k=9 case, including generation of elliptic curves with the shorter Miller loop, the denominator elimination and speed up of the final exponentiation. Then we compare the performance of these choices. From the analysis, we conclude that for pairing-based cryptography at the AES 128 security level, the Barreto-Naehrig curves are the most efficient choice, and the performance of the case k=9 is comparable to the Barreto-Naehrig curves.

  • Iterative Minimum Mean Square Error Interference Alignment Scheme for the MIMO X Channel

    Hui SHEN  Bin LIN  Yi LUO  Feng LIU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:5
      Page(s):
    1348-1354

    In this paper, we propose a new interference alignment (IA) scheme that jointly designs the linear transmitter and receiver for the 2-user MIMO X channel system, using minimum total mean square error criterion, subject to each transmitter power constraint. We show that transmitters and receivers under such criteria could be realized through a joint iterative algorithm. Considering the imperfection of channel state information (CSI), we also extend the minimum mean square error interference alignment schemes for the MIMO X channel with CSI estimation error. A robust iterative algorithm which is insensitve to CSI estimation error is proposed. Simulation results are also provided to demonstrate the proposed algorithm.

  • Power Reduction during Scan Testing Based on Multiple Capture Technique

    Lung-Jen LEE  Wang-Dauh TSENG  Rung-Bin LIN  

     
    PAPER-Semiconductor Materials and Devices

      Vol:
    E91-C No:5
      Page(s):
    798-805

    In this paper, we present a multiple capture approach to reducing the peak power as well as average power consumption during testing. The basic idea behind is to divide a scan chain into two sub-scan chains, and only one sub-scan chain will be enabled at a time during the scan shift or capture operations. We develop a pattern insertion technique to efficiently deal with the capture violation problem during the capture cycle. In order to alleviate the timing cost due to the insertion of redundant patterns, a scan chain partitioning method incorporated with test pattern reordering is developed to reduce the testing time. Experimental results for large ISCAS'89 benchmark circuits show that the proposed approach can efficiently reduce peak and average power with little timing overhead.

  • Research on Analytical Solution Tensor Voting

    Hongbin LIN  Zheng WU  Dong LEI  Wei WANG  Xiuping PENG  

     
    LETTER-Pattern Recognition

      Pubricized:
    2017/12/01
      Vol:
    E101-D No:3
      Page(s):
    817-820

    This letter presents a novel tensor voting mechanism — analytic tensor voting (ATV), to get rid of the difficulties in original tensor voting, especially the efficiency. One of the main advantages is its explicit voting formulations, which benefit the completion of tensor voting theory and computational efficiency. Firstly, new decaying function was designed following the basic spirit of decaying function in original tensor voting (OTV). Secondly, analytic stick tensor voting (ASTV) was formulated using the new decaying function. Thirdly, analytic plate and ball tensor voting (APTV, ABTV) were formulated through controllable stick tensor construction and tensorial integration. These make the each voting of tensor can be computed by several non-iterative matrix operations, improving the efficiency of tensor voting remarkably. Experimental results validate the effectiveness of proposed method.

  • Balanced (Almost) Binary Sequence Pairs of Period Q ≡ 1(mod 4) with Optimal Autocorrelation and Cross-Correlation

    Xiuping PENG  Hongxiao LI  Hongbin LIN  

     
    LETTER-Coding Theory

      Pubricized:
    2021/11/22
      Vol:
    E105-A No:5
      Page(s):
    892-896

    In this letter, the almost binary sequence (sequence with a single zero element) is considered as a special class of binary sequence. Four new bounds on the cross-correlation of balanced (almost) binary sequences with period Q ≡ 1(mod 4) under the precondition of out-of-phase autocorrelation values {-1} or {1, -3} are firstly presented. Then, seven new pairs of balanced (almost) binary sequences of period Q with ideal or optimal autocorrelation values and meeting the lower cross-correlation bounds are proposed by using cyclotomic classes of order 4. These new bounds of (almost) binary sequences with period Q achieve smaller maximum out-of-phase autocorrelation values and cross-correlation values.

  • A Frequency Domain Nonlinearity for Stereo Echo Cancellation

    Ming WU  Zhibin LIN  Xiaojun QIU  

     
    LETTER

      Vol:
    E88-A No:7
      Page(s):
    1757-1759

    This letter proposes a novel nonlinear distortion for the unique identification of receiving room impulses in stereo acoustic echo cancellation when applying the frequency-domain adaptive filtering technique. This nonlinear distortion is effective in reducing the coherence between the two incoming audio channels and its influence on audio quality is inaudible.

  • Perfect Gaussian Integer Sequence Pairs from Cyclic Difference Set Pairs

    Hongbin LIN  Xiuping PENG  Chao FENG  Qisheng TONG  Kai LIU  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:5
      Page(s):
    855-858

    The concept of Gaussian integer sequence pair is generalized from a single Gaussian integer sequence. In this letter, by adopting cyclic difference set pairs, a new construction method for perfect Gaussian integer sequence pairs is presented. Furthermore, the necessary and sufficient conditions for constructing perfect Gaussian integer sequence pairs are given. Through the research in this paper, a large number of perfect Gaussian integer sequence pairs can be obtained, which can greatly extend the existence of perfect sequence pairs.

  • A Non-Iterative Method for Calculating the Effective Capacitance of CMOS Gates with Interconnect Load Effect

    Minglu JIANG  Zhangcai HUANG  Atsushi KUROKAWA  Qiang LI  Bin LIN  Yasuaki INOUE  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E94-A No:5
      Page(s):
    1201-1209

    Gate delay evaluation is always a vital concern for high-performance digital VLSI designs. As the feature size of VLSIs decreases to the nano-meter region, the work to obtain an accurate gate delay value becomes more difficult and time consuming than ever. The conventional methods usually use iterative algorithms to ensure the accuracy of the effective capacitance Ceff, which is usually used to compute the gate delay with interconnect loads and to capture the output signal shape of the real gate response. Accordingly, the efficiency is sacrificed. In this paper, an accurate and efficient approach is proposed for gate delay estimation. With the linear relationship of gate output time points and Ceff, a polynomial approximation is used to make the nonlinear effective capacitance equation be solved without iterative method. Compared to the conventional methods, the proposed method improves the efficiency of gate delay calculation. Meanwhile, experimental results show that the proposed method is in good agreement with SPICE results and the average error is 2.8%.

  • A Direct Construction of Binary Even-Length Z-Complementary Pairs with Zero Correlation Zone Ratio of 6/7

    Xiuping PENG  Mingshuo SHEN  Hongbin LIN  Shide WANG  

     
    LETTER-Digital Signal Processing

      Pubricized:
    2022/05/26
      Vol:
    E105-A No:12
      Page(s):
    1612-1615

    This letter provides a direct construction of binary even-length Z-complementary pairs. To date, the maximum zero correlation zone ratio of Type-I Z-complementary pairs has reached 6/7, but no direct construction of Z-complementary pairs can achieve the zero correlation zone ratio of 6/7. In this letter, based on Boolean function, we give a direct construction of binary even-length Z-complementary pairs with zero correlation zone ratio 6/7. The length of constructed Z-complementary pairs is 2m+3 + 2m + 2+2m+1 and the width of zero correlation zone is 2m+3 + 2m+2.

  • New Families of Almost Binary Sequences with Optimal Autocorrelation Property

    Xiuping PENG  Hongbin LIN  Yanmin LIU  Xiaoyu CHEN  Xiaoxia NIU  Yubo LI  

     
    LETTER-Coding Theory

      Vol:
    E102-A No:2
      Page(s):
    467-470

    Two new families of balanced almost binary sequences with a single zero element of period L=2q are presented in this letter, where q=4d+1 is an odd prime number. These sequences have optimal autocorrelation value or optimal autocorrelation magnitude. Our constructions are based on cyclotomy and Chinese Remainder Theorem.

  • Coefficients Generation for the 4th-Order Leapfrog Sigma-Delta A/D Converters

    Wen-Bin LIN  Bin-Da LIU  

     
    PAPER-Analog Signal Processing

      Vol:
    E87-A No:1
      Page(s):
    231-242

    In this paper, a novel methodology for designing and analyzing high performance sigma-delta leapfrog modulators for ultra-high resolution analog-to-digital (A/D) converters is presented. The less sensitive topology, the leapfrog topology, in component variations is analyzed by considering the noise transfer function (NTF). By using theoretical analysis, the loop coefficients are constrained to a small, clear and definite range called the stable region (SR). With the output voltage limited within 2 V, an absolutely stable region (ASR) is obtained. A program that analyzes and generates the required coefficients is constructed for easily designing this topology. For a 256 over-sampling ratio (OSR) and the coefficients from ASR, the signal to noise ratio (SNR) and dynamic range (DR) are 105 dB and 100 dB, respectively. In accordance with the behavior simulation results, the system is not only stable and efficient but also suitable for high-resolution applications.