The search functionality is under construction.

Author Search Result

[Author] Shuai FANG(2hit)

1-2hit
  • Behavioral Circuit Macromodeling and Analog LSI Implementation for Automobile Engine Intake System

    Zhangcai HUANG  Yasuaki INOUE  Hong YU  Jun PAN  Yun YANG  Quan ZHANG  Shuai FANG  

     
    PAPER

      Vol:
    E90-A No:4
      Page(s):
    732-740

    Accurate estimating or measuring the intake manifold absolute pressure plays an important role in automobile engine control. In order to achieve the real-time estimation of the absolute pressure, the high accuracy and high speed processing ability are required for automobile engine control systems. Therefore, in this paper, an analog method is discussed and a fully integrated analog circuit is proposed to simulate automobile intake systems. Furthermore, a novel behavioral macromodeling is proposed for the analog circuit design. With the analog circuit, the intake manifold absolute pressure, which plays an important role for the effective automobile engine control, can be accurately estimated or measured in real time.

  • Accurate Method for Calculating the Effective Capacitance with RC Loads Based on the Thevenin Model

    Minglu JIANG  Zhangcai HUANG  Atsushi KUROKAWA  Shuai FANG  Yasuaki INOUE  

     
    PAPER-Nonlinear Problems

      Vol:
    E92-A No:10
      Page(s):
    2531-2539

    In deep submicron designs, predicting gate delays with interconnect load is a noteworthy work for Static Timing Analysis (STA). The effective capacitance Ceff concept and the Thevenin model that replaces the gate with a linear resistor and a voltage source are usually used to calculate the delay of gate with interconnect load. In conventional methods, it is not considered that the charges transferred into interconnect load and Ceff in the Thevenin model are not equal. The charge difference between interconnect load and Ceff has the large influence to the accuracy of computing Ceff. In this paper, an advanced effective capacitance model is proposed to consider the above problem in the Thevenin model, where the influence of the charge difference is modeled as one part of the effective capacitance to compute the gate delay. Experimental results show a significant improvement in accuracy when the charge difference between interconnect load and Ceff is considered.