The search functionality is under construction.

Author Search Result

[Author] Li DING(5hit)

1-5hit
  • Accurate Nanopower Supply-Insensitive CMOS Unit Vth Extractor and αVth Extractor with Continuous Variety

    Jing WANG  Li DING  Qiang LI  Hirofumi SHINOHARA  Yasuaki INOUE  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E100-A No:5
      Page(s):
    1145-1155

    In this paper, a nanopower supply-insensitive complementary metal-oxide-semiconductor (CMOS) unit threshold voltage (Vth) extractor circuit is proposed. It meets the contemporary industry demand for portable devices that operate with very low power consumption and small output sensitivity. An α times Vth (αVth) extractor is also described, in which α varies continuously. Both incremental and decremental αVth voltages are obtained. A post-layout simulation results using HSPICE with CMOS 0.18um process show that the proposed unit Vth extractor consumes 265nW of power given a 1.6V power supply. Sensitivity to temperature is 0.022%/°C ranging from 0°C to 100°C. Sensitivity to supply voltage is 0.027%/V.

  • A 3.5ppm/°C 0.85V Bandgap Reference Circuit without Resistors

    Jing WANG  Qiang LI  Li DING  Hirofumi SHINOHARA  Yasuaki INOUE  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E99-A No:7
      Page(s):
    1430-1437

    A CMOS bandgap reference circuit without resistors, which can successfully operate under 1V supply voltage is proposed. The improvement is realized by the technique of the voltage divider and a new current source. The most attractive merit is that the proposed circuit breaks the bottleneck of low supply voltage design caused by the constant bandgap voltage value (1.25V). Moreover, the temperature coefficient of the reference voltage Vref is improved by compensating the temperature dependence caused by the current source. The simulation results using a standard CMOS 0.18 um process show that the value of Vref can be achieved around 0.5 V with a minimum supply voltage of 0.85 V. Meanwhile, the temperature coefficient of the output voltage is only 3.5ppm/°C from 0 °C to 70 °C.

  • GAN-SR Anomaly Detection Model Based on Imbalanced Data

    Shuang WANG  Hui CHEN  Lei DING  He SUI  Jianli DING  

     
    PAPER-Data Engineering, Web Information Systems

      Pubricized:
    2023/04/13
      Vol:
    E106-D No:7
      Page(s):
    1209-1218

    The issue of a low minority class identification rate caused by data imbalance in anomaly detection tasks is addressed by the proposal of a GAN-SR-based intrusion detection model for industrial control systems. First, to correct the imbalance of minority classes in the dataset, a generative adversarial network (GAN) processes the dataset to reconstruct new minority class training samples accordingly. Second, high-dimensional feature extraction is completed using stacked asymmetric depth self-encoder to address the issues of low reconstruction error and lengthy training times. After that, a random forest (RF) decision tree is built, and intrusion detection is carried out using the features that SNDAE retrieved. According to experimental validation on the UNSW-NB15, SWaT and Gas Pipeline datasets, the GAN-SR model outperforms SNDAE-SVM and SNDAE-KNN in terms of detection performance and stability.

  • A 16/32Gbps Dual-Mode SerDes Transmitter with Linearity Enhanced SST Driver

    Li DING  Jing JIN  Jianjun ZHOU  

     
    PAPER

      Pubricized:
    2022/05/13
      Vol:
    E105-A No:11
      Page(s):
    1443-1449

    This brief presents A 16/32Gb/s dual-mode transmitter including a linearity calibration loop to maintain amplitude linearity of the SST driver. Linearity detection and corresponding master-slave power supply circuits are designed to implement the proposed architecture. The proposed transmitter is manufactured in a 22nm FD-SOI process. The linearity calibration loop reduces the peak INL errors of the transmitter by 50%, and the RLM rises from 92.4% to 98.5% when the transmitter is in PAM4 mode. The chip area of the transmitter is 0.067mm2, while the proposed linearity enhanced part is 0.05×0.02mm2 and the total power consumption is 64.6mW with a 1.1V power supply. The linearity calibration loop can be detached from the circuit without consuming extra power.

  • An Effective Model of the Overshooting Effect for Multiple-Input Gates in Nanometer Technologies

    Li DING  Zhangcai HUANG  Atsushi KUROKAWA  Jing WANG  Yasuaki INOUE  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E97-A No:5
      Page(s):
    1059-1074

    With the scaling of CMOS technology into the nanometer regime, the overshooting effect is more and more obvious and has a significant influence to gate delay and power consumption. Recently, researchers have already proposed the overshooting effect models for an inverter. However, the accurate overshooting effect model for multiple-input gates is seldom presented and the existing technology to reduce a multiple-input gate to an inverter is not useful when modeling the overshooting effect for multiple-input gates. Therefore, modeling the overshooting effect for multiple-input gates is proposed in this paper. Firstly, a formula-based model is presented for the overshooting time of 2-input NOR gate. Then, more complicated methods are given to calculate the overshooting time of 3-input NOR gate and other multiple-input gates. The proposed model is verified to have a good agreement, within 3.4% error margin, compared with SPICE simulation results using CMOS 32nm PTM model.