1-2hit |
Dennis G. DEPPE Diana L. HUFFAKER Hongyu DENG Qing DENG Tchang-Hun OH
The use of selective oxidation to fabricate vertical-cavity surface-emitting lasers is described. The nativeoxide impacts the device design in two ways, the first being in the introduction of an intracavity dielectric aperture that laterally confines the mode, and the second in the formation of high contrast dielectric Bragg reflectors to shorten the effective cavity length. To date the more important has been the indexconfinement, with record low threshold currents, threshold voltages, and power conversion efficiencies being reported from several groups. However, future designs will likely also benefit from the reduced diffraction loss for a small mode size that is possible with high contrast native oxide/semiconductor mirrors. We describe some of the most important design issues in obtaining ultralow threshold operation.
Tomoyuki YOSHIE Oleg B. SHCHEKIN Hao CHEN Dennis G. DEPPE Axel SCHERER
We have demonstrated low-threshold two-dimensional photonic crystal lasers with self-assembled InAs/GaAs quantum dots. Coupled cavity designs of whispering gallery modes are defined in square lattice photonic crystal slabs. Our lasers showed a small 120 µW input pumping power threshold. Actual absorption power is evaluated to be less than 20 µW. Our lasers show high spontaneous emission coupling (β) factors0.1. The mode volumes are expected to be 0.7-1.2 times cubed wavelength by our modelling. Based on threshold analysis, 80 QDs are the effective number of QDs defined as the number of QDs needed to make PC cavities transparent if they are on maximum optical field points. Using the same analysis we found that single quantum dot lasing is likely to occur both by proper alignment of the single quantum dot relative to geometries of photonic crystals and by using sharp QD emission lines in high-Q localized modes.