The search functionality is under construction.

Author Search Result

[Author] Dong ZHENG(6hit)

1-6hit
  • Constructions of 2-Rotation Symmetric Semi-Bent Functions with Degree Bigger than 2

    Qinglan ZHAO  Dong ZHENG  Baodong QIN   Rui GUO  

     
    PAPER-Cryptography and Information Security

      Vol:
    E102-A No:11
      Page(s):
    1497-1503

    Semi-bent functions have important applications in cryptography and coding theory. 2-rotation symmetric semi-bent functions are a class of semi-bent functions with the simplicity for efficient computation because of their invariance under 2-cyclic shift. However, no construction of 2-rotation symmetric semi-bent functions with algebraic degree bigger than 2 has been presented in the literature. In this paper, we introduce four classes of 2m-variable 2-rotation symmetric semi-bent functions including balanced ones. Two classes of 2-rotation symmetric semi-bent functions have algebraic degree from 3 to m for odd m≥3, and the other two classes have algebraic degree from 3 to m/2 for even m≥6 with m/2 being odd.

  • New Construction Methods on Multiple Output Resilient Boolean Functions with High Nonlinearity

    Luyang LI  Linhui WANG  Dong ZHENG  Qinlan ZHAO  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/08/10
      Vol:
    E105-A No:2
      Page(s):
    87-92

    Construction of multiple output functions is one of the most important problems in the design and analysis of stream ciphers. Generally, such a function has to be satisfied with several criteria, such as high nonlinearity, resiliency and high algebraic degree. But there are mutual restraints among the cryptographic parameters. Finding a way to achieve the optimization is always regarded as a hard task. In this paper, by using the disjoint linear codes and disjoint spectral functions, two classes of resilient multiple output functions are obtained. It has been proved that the obtained functions have high nonlinearity and high algebraic degree.

  • Characterizing Linear Structures of Boolean Functions from Arithmetic Walsh Transform

    Qinglan ZHAO  Dong ZHENG  Xiangxue LI  Yinghui ZHANG  Xiaoli DONG  

     
    PAPER-Cryptography and Information Security

      Vol:
    E100-A No:9
      Page(s):
    1965-1972

    As a with-carry analog (based on modular arithmetic) of the usual Walsh-Hadamard transform (WHT), arithmetic Walsh transform (AWT) has been used to obtain analogs of some properties of Boolean functions which are important in the design and analysis of cryptosystems. The existence of nonzero linear structure of Boolean functions is an important criterion to measure the weakness of these functions in their cryptographic applications. In this paper, we find more analogs of linear structures of Boolean functions from AWT. For some classes of n-variable Boolean functions f, we find necessary and sufficient conditions for the existence of an invariant linear structure and a complementary linear structure 1n of f. We abstract out a sectionally linear relationship between AWT and WHT of n-variable balanced Boolean functions f with linear structure 1n. This result show that AWT can characterize cryptographic properties of these functions as long as WHT can. In addition, for a diagonal Boolean function f, a recent result by Carlet and Klapper says that the AWT of f can be expressed in terms of the AWT of a diagonal Boolean function of algebraic degree at most 3 in a larger number of variables. We provide for the result a complete and more modular proof which works for both even and odd weights (of the parameter c in the Corollary 19 by Carlet and Klapper (DCC 73(2): 299-318, 2014).

  • PWG: Progressive Weight-Growth Algorithm for LDPC Codes

    Xiangxue LI  Qingji ZHENG  Haifeng QIAN  Dong ZHENG  Kefei CHEN  

     
    LETTER-Coding Theory

      Vol:
    E97-A No:2
      Page(s):
    685-689

    Given specified parameters, the number of check nodes, the expected girth and the variable node degrees, the Progressive Weight-Growth (PWG) algorithm is proposed to generate high rate low-density parity-check (LDPC) codes. Based on the theoretic foundation that is to investigate the girth impact by adding/removing variable nodes and edges of the Tanner graph, the PWG progressively increases column weights of the parity check matrix without violating the constraints defined by the given parameters. The analysis of the computational complexity and the simulation of code performance show that the LDPC codes by the PWG provide better or comparable performance in comparison with LDPC codes by some well-known methods (e.g., Mackay's random constructions, the PEG algorithm, and the bit-filling algorithm).

  • Construction of Resilient Boolean and Vectorial Boolean Functions with High Nonlinearity

    Luyang LI  Dong ZHENG  Qinglan ZHAO  

     
    LETTER-Cryptography and Information Security

      Vol:
    E102-A No:10
      Page(s):
    1397-1401

    Boolean functions and vectorial Boolean functions are the most important components of stream ciphers. Their cryptographic properties are crucial to the security of the underlying ciphers. And how to construct such functions with good cryptographic properties is a nice problem that worth to be investigated. In this paper, using two small nonlinear functions with t-1 resiliency, we provide a method on constructing t-resilient n variables Boolean functions with strictly almost optimal nonlinearity >2n-1-2n/2 and optimal algebraic degree n-t-1. Based on the method, we give another construction so that a large class of resilient vectorial Boolean functions can be obtained. It is shown that the vectorial Boolean functions also have strictly almost optimal nonlinearity and optimal algebraic degree.

  • A Rectification Scheme for RST Invariant Image Watermarking

    Yan LIU  Dong ZHENG  Jiying ZHAO  

     
    LETTER

      Vol:
    E88-A No:1
      Page(s):
    314-318

    This letter presents an image rectification scheme that can be used by any image watermarking algorithms to provide robustness against rotation, scaling and translation (RST) transformations.