The search functionality is under construction.

Author Search Result

[Author] Luyang LI(2hit)

1-2hit
  • New Construction Methods on Multiple Output Resilient Boolean Functions with High Nonlinearity

    Luyang LI  Linhui WANG  Dong ZHENG  Qinlan ZHAO  

     
    PAPER-Cryptography and Information Security

      Pubricized:
    2021/08/10
      Vol:
    E105-A No:2
      Page(s):
    87-92

    Construction of multiple output functions is one of the most important problems in the design and analysis of stream ciphers. Generally, such a function has to be satisfied with several criteria, such as high nonlinearity, resiliency and high algebraic degree. But there are mutual restraints among the cryptographic parameters. Finding a way to achieve the optimization is always regarded as a hard task. In this paper, by using the disjoint linear codes and disjoint spectral functions, two classes of resilient multiple output functions are obtained. It has been proved that the obtained functions have high nonlinearity and high algebraic degree.

  • Construction of Resilient Boolean and Vectorial Boolean Functions with High Nonlinearity

    Luyang LI  Dong ZHENG  Qinglan ZHAO  

     
    LETTER-Cryptography and Information Security

      Vol:
    E102-A No:10
      Page(s):
    1397-1401

    Boolean functions and vectorial Boolean functions are the most important components of stream ciphers. Their cryptographic properties are crucial to the security of the underlying ciphers. And how to construct such functions with good cryptographic properties is a nice problem that worth to be investigated. In this paper, using two small nonlinear functions with t-1 resiliency, we provide a method on constructing t-resilient n variables Boolean functions with strictly almost optimal nonlinearity >2n-1-2n/2 and optimal algebraic degree n-t-1. Based on the method, we give another construction so that a large class of resilient vectorial Boolean functions can be obtained. It is shown that the vectorial Boolean functions also have strictly almost optimal nonlinearity and optimal algebraic degree.