The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Erik DAHLMAN(5hit)

1-5hit
  • 5G Wireless Access Open Access

    Erik DAHLMAN  Stefan PARKVALL  Janne PEISA  

     
    INVITED PAPER

      Vol:
    E98-B No:8
      Page(s):
    1407-1414

    5G is the next step in the evolution of mobile communication and a key component of the future networked society. It will include the evolution of LTE as well as new non-backwards-compatible technology. With capabilities such as massive system capacity, higher data rates, very low latency and ultra-high reliability, 5G will provide significantly enhanced mobile-broadband experience but also support a wide range of new wireless applications and use cases. Key technology components include operation at higher frequency bands and flexible spectrum usage, advanced multi-antenna/multi-site transmission, lean transmission, access/backhaul integration, and possibility for direct device-to-device communication.

  • Indoor and Outdoor Experiments of Downlink Transmission at 15-GHz Band for 5G Radio Access

    Kiichi TATEISHI  Daisuke KURITA  Atsushi HARADA  Yoshihisa KISHIYAMA  Takehiro NAKAMURA  Stefan PARKVALL  Erik DAHLMAN  Johan FURUSKOG  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1238-1246

    This paper presents indoor and outdoor experiments that confirm 4-Gbps throughput based on 400-MHz bandwidth transmission when applying carrier aggregation (CA) with 4 component carriers (CCs) and 4-by-4 single-user multiple-in multiple-out multiplexing (MIMO) in the 15-GHz frequency band in the downlink of 5G cellular radio access. A new radio interface with time division duplexing (TDD) and radio access based on orthogonal frequency-division multiple access (OFDMA) is implemented in a 5G testbed to confirm ultra-high speed transmission with low latency. The indoor experiment in an entrance hall shows that the peak throughput is 4.3Gbps in front of the base station (BS) antenna where the reference signal received power (RSRP) is -40dBm although the channel correlation at user equipment (UE) antenna is 0.8. The outdoor experiment in an open-space parking area shows that the peak throughput is 2.8Gbps in front of a BS antenna with a high RSRP although rank 2 is selected due to the high channel correlation. The results also show that the average throughput of 2Gbps is achieved 120m from the BS antenna. In a courtyard enclosed by building walls, 3.6Gbps is achieved in an outdoor-to-outdoor environment with a high RSRP and in an outdoor-to-indoor environment where the RSRP is lower due to the penetration loss of glass windows, but the multipath rich environment contributes to realizing the low channel correlation.

  • 5G Evolution and Beyond Open Access

    Erik DAHLMAN  Gunnar MILDH  Stefan PARKVALL  Patrik PERSSON  Gustav WIKSTRÖM  Hideshi MURAI  

     
    INVITED PAPER

      Pubricized:
    2021/03/08
      Vol:
    E104-B No:9
      Page(s):
    984-991

    The paper provides an overview of the current status of the 5G evolution as well as a research outlook on the future wireless-access evolution towards 6G.

  • Field Experiments on Downlink Distributed MIMO at 15-GHz Band for 5G Radio Access

    Daisuke KURITA  Kiichi TATEISHI  Atsushi HARADA  Yoshihisa KISHIYAMA  Takehiro NAKAMURA  Stefan PARKVALL  Erik DAHLMAN  Johan FURUSKOG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1247-1255

    This paper presents outdoor field experimental results to clarify the 4-by-4 multiple-input multiple-output (MIMO) throughput performance when applying joint transmission (JT) and distributed MIMO to the 15-GHz frequency band in the downlink of a 5G cellular radio access system. Experimental results for JT in a 100m × 70m large-cell scenario show that throughput improvement of up to 10% is achieved in most of the area and the peak data rate is improved from 2.8Gbps to 3.7Gbps. Based on analysis of the reference signal received power (RSRP) and channel correlation, we find that the RSRP is improved in lower RSRP areas, and that the channel correlation is improved in higher RSRP areas. These improvements contribute to higher throughput performance. The advantage of distributed MIMO and JT are compared in a 20m × 20m small-cell scenario. The throughput improvement of 70% and throughput exceeding 5 Gbps were achieved when applying distributed MIMO due to the improvement in the channel correlation. When applying JT, the RSRP is improved; however the channel correlation is not. As a result, there is no improvement in the throughput performance in the area. Finally, the relationship between the transmission point (TP) allocation and the direction of user equipment (UE) antenna arrangement is investigated. Two TP positions at 90 and 180deg. from each other are shown to be advantageous in terms of the throughput performance with different direction of UE antenna arrangement. Thus, we conclude that JT and distributed MIMO are promising technologies for the 5G radio access system that can compensate for the propagation loss and channel correlation in high frequency bands.

  • 3G Radio Access Evolution -- HSPA and LTE for Mobile Broadband -- Open Access

    Erik DAHLMAN  Ylva JADING  Stefan PARKVALL  Hideshi MURAI  

     
    INVITED PAPER

      Vol:
    E92-B No:5
      Page(s):
    1432-1440

    This paper provides an overview of the 3GPP radio-access technologies for mobile broadband -- HSPA and its evolution, and LTE. The paper also discusses the current stage of the 3GPP activities on evolving LTE towards LTE-Advanced and full IMT-Advanced compliance.