The search functionality is under construction.

Author Search Result

[Author] Fatemeh ABRISHAMIAN(2hit)

1-2hit
  • Broadening Adjustable Range on Post-Fabrication Resonance Wavelength Trimming of Long-Period Fiber Gratings and the Mechanisms of Resonance Wavelength Shifts

    Fatemeh ABRISHAMIAN  Katsumi MORISHITA  

     
    PAPER-Optoelectronics

      Vol:
    E94-C No:4
      Page(s):
    641-647

    The adjustable range on post-fabrication resonance wavelength trimming of long-period fiber gratings was broadened toward the blue side, and the mechanisms of the resonance wavelength shifts caused by heating were investigated. It can be concluded that the glass structure relaxes more slowly than the residual stress with decreasing heating temperature and the blue shift caused by the residual stress relaxation appears more strongly at the early stage of heating. The blue shift of 41 nm was obtained by heating a long-period grating at 600 for 3500 minutes. The changes of the index difference inducing the wavelength shifts of -41 nm and 35 nm were estimated at about -1.210-4 and +1.0 10-4 by numerical analysis, respectively.

  • Cascade Connection of Two Long-Period Fiber Gratings with a π-Phase Shift to Expand the Rejection Bandwidths

    Fatemeh ABRISHAMIAN  Katsumi MORISHITA  

     
    PAPER-Optoelectronics

      Vol:
    E98-C No:6
      Page(s):
    512-517

    A novel method was developed to expand and adjust the bandwidth of long-period fiber gratings (LPFGs) as band-rejection filters. The band-rejection filters were constructed by concatenating two LPFGs with an appropriate space, that causes a $pi$-phase shift. The component LPFGs with the same period and the different numbers of periods are designed to have $-$3-dB transmission at wavelengths on both sides of a resonance wavelength symmetrically, and the transmission loss of the concatenated LPFGs peaks at the -3-dB transmission wavelengths. The rejection bandwidth was widened by changing the interval between the -3-dB transmission wavelengths. The concatenated LPFGs were simulated by using a transfer-matrix method based on a discrete coupling model, and were fabricated by a point-by-point arc discharge technique on the basis of the simulation results. It was demonstrated that the rejection bandwidth at 20-dB attenuation reached 26.6,nm and was 2.7 times broader than that of a single uniform LPFG.