The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Katsumi MORISHITA(6hit)

1-6hit
  • Refractive Index Variations and Long-Period Fiber Gratings Made by the Glass Structure Change

    Katsumi MORISHITA  Shi Feng YUAN  Yoshihiro MIYAKE  Takahiro FUJIHARA  

     
    PAPER-Optoelectronics

      Vol:
    E86-C No:8
      Page(s):
    1749-1758

    It is shown that the glass structure change is a simple and widely applicable method to modify refractive index locally in various glass fibers. A small part of a glass fiber is heated immediately to above its melt temperature by arc discharge, and then the molten fiber undergoes rapid cooling, which freezes the change of the glass structure. Therefore the refractive index of the fiber is decreased partially by the glass structure change induced by rapid solidification. The index reduction in a fiber fabricated from multicomponent glasses is estimated to be more than 0.006. To clarify that rapid solidification works for various glasses including silica glasses, long-period gratings are written in a standard telecommunication fiber with various discharge currents and times. The peak loss of more than 25 dB is obtained within only 6 periods. The index change can be adjusted by the discharge conditions. The gratings are not degraded by heating the whole gratings at 700C for 2 hours, and are highly temperature-stable. It is shown that resonance wavelengths can be tuned by controlling the heating temperature and heating time.

  • Effects of the Loop Birefringence on Fiber Loop Polarizers Using a Fused Taper Coupler

    Katsumi MORISHITA  

     
    LETTER-Opto-Electronics

      Vol:
    E78-C No:3
      Page(s):
    311-314

    The optical characteristics of the fiber loop polarizer are investigated considering the birefringence in the fiber loop. The experimental and the theoretical spectrum transmissions agree well with each other. The extinction ratio and the insertion loss of the fiber polarizers have been improved for practical use.

  • Cascade Connection of Two Long-Period Fiber Gratings with a π-Phase Shift to Expand the Rejection Bandwidths

    Fatemeh ABRISHAMIAN  Katsumi MORISHITA  

     
    PAPER-Optoelectronics

      Vol:
    E98-C No:6
      Page(s):
    512-517

    A novel method was developed to expand and adjust the bandwidth of long-period fiber gratings (LPFGs) as band-rejection filters. The band-rejection filters were constructed by concatenating two LPFGs with an appropriate space, that causes a $pi$-phase shift. The component LPFGs with the same period and the different numbers of periods are designed to have $-$3-dB transmission at wavelengths on both sides of a resonance wavelength symmetrically, and the transmission loss of the concatenated LPFGs peaks at the -3-dB transmission wavelengths. The rejection bandwidth was widened by changing the interval between the -3-dB transmission wavelengths. The concatenated LPFGs were simulated by using a transfer-matrix method based on a discrete coupling model, and were fabricated by a point-by-point arc discharge technique on the basis of the simulation results. It was demonstrated that the rejection bandwidth at 20-dB attenuation reached 26.6,nm and was 2.7 times broader than that of a single uniform LPFG.

  • Influence of Residual Stress on Post-Fabrication Resonance Wavelength Trimming of Long-Period Fiber Gratings by Heating

    Katsumi MORISHITA  Akihiro KAINO  

     
    PAPER-Optoelectronics

      Vol:
    E90-C No:6
      Page(s):
    1318-1323

    Long-period gratings (LPGs) are written in the fibers un-preheated and preheated. The influence of residual stress on trimming resonance wavelengths by heating the LPGs is investigated comparing the post-heating changes of the transmission characteristics. It becomes evident that the residual stress relaxation shifts resonance wavelengths to shorter wavelengths quickly and the glass structure modification moves them to longer wavelengths slowly. The relaxation rate of the glass structure drops rapidly with the decrease in heating temperature, and the influence of the residual stress relaxation appears more strongly at the early stage of heating at a lower temperature. The trimming wavelength range can be broadened on the short wavelength side by decreasing the heating temperature. We could adjust resonance wavelengths without significant peak loss changes by the residual stress relaxation before writing LPGs, though the trimming range becomes narrow.

  • Broadband Fibre Loop Reflectors

    Katsumi MORISHITA  Yoshitaka KOSHIBA  Masamichi S. YATAKI  

     
    PAPER-Optical Device

      Vol:
    E76-C No:10
      Page(s):
    1487-1490

    A wavelength-insensitive reflector is demonstrated with a fibre loop which has an asymmetry in the constituent coupler. The reflector is made by thinning one of two identical fibres. The reflected power is more than 0.6 dB (87%) over the wavelength region of 1.2-1.35 µm and 1.42-1.65 µm. The transmitted power is less than 30 dB in the 1.23-1.63 µm region and less than 40 dB at 1.3 and 1.55 µm.

  • Broadening Adjustable Range on Post-Fabrication Resonance Wavelength Trimming of Long-Period Fiber Gratings and the Mechanisms of Resonance Wavelength Shifts

    Fatemeh ABRISHAMIAN  Katsumi MORISHITA  

     
    PAPER-Optoelectronics

      Vol:
    E94-C No:4
      Page(s):
    641-647

    The adjustable range on post-fabrication resonance wavelength trimming of long-period fiber gratings was broadened toward the blue side, and the mechanisms of the resonance wavelength shifts caused by heating were investigated. It can be concluded that the glass structure relaxes more slowly than the residual stress with decreasing heating temperature and the blue shift caused by the residual stress relaxation appears more strongly at the early stage of heating. The blue shift of 41 nm was obtained by heating a long-period grating at 600 for 3500 minutes. The changes of the index difference inducing the wavelength shifts of -41 nm and 35 nm were estimated at about -1.210-4 and +1.0 10-4 by numerical analysis, respectively.