1-2hit |
Xiaoran CHEN Xin QIU Xurong CHAI Fuqi MU
Broadband amplifiers have been used in modern wireless communication systems. However, the accompanying disadvantage is that there is more nonlinear interference in the available operating frequency band. In addition to the in-band intermodulation distortion which affecting adjacent frequency bands the most important is harmonic distortion. In this letter we present a robust and low complex digital harmonic canceling model called cross-disturbing harmonic (CDH) model for broadband power amplifiers (PAs). The approach introducing cross terms is used to enhance the robustness of the model, thereby significantly increase the stability of the system. The CDH model still has excellent performance when actively reducing the number of coefficients. Comparisons are conducted between the CDH model and the other state-of-the-art model called memory polynomial harmonic (MPM) model. Experimental results show that the CDH model can achieve comparable performance as the MPM model but with much fewer (43%) coefficients.
In this letter, we adopt two multi-carrier relay selections, i.e., bulk and per-subcarrier (PS), to the multi-hop decode-and-forward relaying orthogonal frequency-division multiplexing with index modulation (OFDM-IM) system. Particularly, in the form of average outage probability (AOP), the influence of joint selection and non-joint selection acting on the last two hops on the system is analyzed. The closed-form expressions of AOPs and the asymptotic AOPs expressions at high signal-to-noise ratio are given and verified by numerical simulations. The results show that both bulk and PS can achieve full diversity order and that PS can provide additional power gain compared to bulk when JS is used. The theoretical analyses in this letter provide an insight into the combination of OFDM-IM and cooperative communication.