1-5hit |
Fankun ZENG Xin QIU Jinhai LI Haiyang LIU Xiaoran CHEN
Global Navigation Satellite System (GNSS) receivers often realize anti-jamming capabilities by combining array antennas with space-time adaptive processing (STAP). Unfortunately, in suppressing the interference, basic STAP degrades the GNSS signal. For one thing, additional carrier phase errors and code phase errors to the GNSS signal are introduced; for another, the shape of the cross-correlation function (CCF) will be distorted by STAP, introducing tracking errors when the receiver is in tracking mode. Both of them will eventually cause additional Pseudo-Range (PR) bias, and these problems prevent STAP from being directly applied to high-precision satellite navigation receivers. The paper proposes a novel anti-jamming method based on STAP that solves the above problems. First, the proposed method constructs a symmetric STAP by constraining the STAP coefficients. Subsequently, with the information of the steering vector, a compensation FIR filter is cascaded after the symmetric STAP. This approach ensures that the proposed method introduces only a fixed offset to the code phase and carrier phase, and the order of the STAP completely determines the offset, which can be compensated during PR measurements. Meanwhile, the proposed method maintains the symmetry of the CCF, and the receiver can accurately track the carrier phase and code phase in tracking mode. The effectiveness of the proposed method is validated through simulations, which suggest that, in the worst case, our method does not increase carrier and code phase errors and tracking error at the expense of only a 2.86dB drop in interference suppression performance.
Fankun ZENG Xin QIU Jinhai LI Biqi LONG Wuhai SU Xiaoran CHEN
Mutual coupling between antenna array elements will significantly degrade the performance of the array signal processing methods. Due to the Toeplitz structure of mutual coupling matrix (MCM), there exist some mutual coupling calibration algorithms for the uniform linear array (ULA) or uniform circular array (UCA). But few methods for other arrays. In this letter, we derive a new transformation formula for the MCM of the 7-elements hexagonal array (HA-7). Further, we extend two mutual coupling auto-calibration methods from UCA to HA by the transformation formula. Simulation results demonstrate the validity of the proposed two methods.
Yifan GUO Zhijun WANG Wu GUAN Liping LIANG Xin QIU
This letter provides an efficient massive multiple-input multiple-output (MIMO) detector based on quasi-newton methods to speed up the convergence performance under realistic scenarios, such as high user load and spatially correlated channels. The proposed method leverages the information of the Hessian matrix by merging Barzilai-Borwein method and Limited Memory-BFGS method. In addition, an efficient initial solution based on constellation mapping is proposed. The simulation results demonstrate that the proposed method diminishes performance loss to 0.7dB at the bit-error-rate of 10-2 at 128×32 antenna configuration with low complexity, which surpasses the state-of-the-art (SOTA) algorithms.
Xiaoran CHEN Xin QIU Xurong CHAI Fuqi MU
Broadband amplifiers have been used in modern wireless communication systems. However, the accompanying disadvantage is that there is more nonlinear interference in the available operating frequency band. In addition to the in-band intermodulation distortion which affecting adjacent frequency bands the most important is harmonic distortion. In this letter we present a robust and low complex digital harmonic canceling model called cross-disturbing harmonic (CDH) model for broadband power amplifiers (PAs). The approach introducing cross terms is used to enhance the robustness of the model, thereby significantly increase the stability of the system. The CDH model still has excellent performance when actively reducing the number of coefficients. Comparisons are conducted between the CDH model and the other state-of-the-art model called memory polynomial harmonic (MPM) model. Experimental results show that the CDH model can achieve comparable performance as the MPM model but with much fewer (43%) coefficients.
Xiaoran CHEN Xin QIU Xurong CHAI
Orthogonal frequency division multiplexing (OFDM) technique has been widely used in communication systems in pursuit of the most efficient utilization of spectrum. However, the increase of the number of orthogonal subcarriers will lead to the rise of the peak-to-average power ratio (PAPR) of the waveform, thus reducing the efficiency of the power amplifiers. In this letter we propose a phase-changed PAPR reduction technique based on windowing function architecture for OFDM systems. This technique is based on the idea of phase change, which makes the spectrum of output signal almost free of regrowth caused by peak clipping. It can reduce more than 28dBc adjacent channel power ratio (ACPR) compared with the traditional peak windowing clipping methods in situation that peak is maximally suppressed. This technique also has low algorithm complexity so it can be easily laid out on hardware. The proposed algorithm has been laid out on a low-cost field-programmable gate array (FPGA) to verify its effectiveness and feasibility. A 64-QAM modulated 20M LTE-A waveform is used for measurement, which has a sampling rate of 245.67M.